Abstract:
The present invention is directed to systems, apparatus, methods and procedures for the noninvasive treatment of tissue, including treatment using microwave energy. In one embodiment of the invention a medical device and associated apparatus and procedures are used to treat dermatological conditions using, for example, microwave energy.
Abstract:
An applicator-tissue interface is disclosed for use in connection with medical device treatment applicators. The interface provides a cover to protect applicator components against contamination and may be disposable or reusable. Also included are tissue acquisition features including a tissue receiving chamber defined by a bio-barrier with vacuum ports or channels for tissue acquisition. Vacuum balancing is provided to prevent contamination on the applicator side of the bio-barrier. Locking mechanisms are disclosed for ensuring secure attachment between the interface and applicator. Methods of using the applicator-tissue interface in connection with an applicator are also disclosed.
Abstract:
An tissue interface module has an applicator chamber on a proximal side of the tissue interface module and a tissue acquisition chamber on a distal side of the tissue interface module. The applicator chamber may include: an opening adapted to receive the applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a sealing member positioned at a proximal side of the applicator chamber; and a vacuum interface positioned at a proximal side of the applicator chamber and adapted to receive a vacuum inlet positioned on a distal end of the applicator. The invention also includes corresponding methods.
Abstract:
An applicator-tissue interface is disclosed for use in connection with medical device treatment applicators. The interface provides a cover to protect applicator components against contamination and may be disposable or reusable. Also included are tissue acquisition features including a tissue receiving chamber defined by a bio-barrier with vacuum ports or channels for tissue acquisition. Vacuum balancing is provided to prevent contamination on the applicator side of the bio-barrier. Locking mechanisms are disclosed for ensuring secure attachment between the interface and applicator. Methods of using the applicator-tissue interface in connection with an applicator are also disclosed.
Abstract:
A dermatological energy applicator and tissue interface module are provided which may include any number of features. The dermatological energy applicator can be configured to apply microwave energy to tissue to treat conditions of the skin, including hyperhidrosis or excessive sweating. The energy applicator can further include a cooling element and vacuum ports. The tissue interface module can include an applicator chamber adapted to receive the energy applicator, and can further include a tissue acquisition chamber adapted to engage tissue, a bio-barrier configured to prevent passage of gas and liquid, and a filter disposed between the applicator chamber and the tissue acquisition chamber configured to prevent passage of gas but prevent passage of liquid.
Abstract:
A system applies, in a non- invasive manner, energy to a targeted tissue region employing a controlled source of energy, a multiple use applicator, and a single use, applicator- tissue interface carried by the applicator. The system can generate and apply energy in a controlled fashion to form a predefined pattern of lesions that provide therapeutic benefit, e.g., to moderate or interrupt function of the sweat glands in the underarm (axilla).