Abstract:
A new and comparatively small type of open-ended microwave applicators has been disclosed. They are for example suitable for transmission into and reception from contacting objects such as protruding human bodyparts for inhomogeneity detection by tomographic methods. The applicators according to the invention are of the dielectric-filled open-ended ridged rectangular TE 10 type, with an insert filling the ridge and having a higher permittivity than the surrounding space. The shape of the insert can be as a frustrum pyramid towards the opening. The overall design promotes narrow beamwidths and minimises nearfields and surface wave excitation.
Abstract:
Devices, systems, and methods are disclosed herein for treatment of a disease, disorder, or condition in a vertebrate subject. A device is provided that includes one or more cooling elements configured to be applied to one or more tissues of a vertebrate subject to modulate at least one activity of brown adipose tissue of the vertebrate subject, and a programmable controller configured to provide instructions to the one or more cooling elements in response to information regarding one or more physiological conditions of the vertebrate subject.
Abstract:
The invention relates to a thermal treatment applicator (19) for the deposition of thermal energy within tissue of a body (10) of a patient. The applicator (19), comprises: a plurality of RF antennae (20) for radiating a RF electromagnetic field toward the body (10); - a plurality of RF power amplifiers (21) supplying RF signals to the RF antennae (20), wherein each RF power amplifier (21) comprises a transistor and an output matching network (22) transforming the output impedance of the transistor into a low impedance value. Moreover, the invention relates to a MR imaging guided therapy system (1).
Abstract:
An applicator-tissue interface is disclosed for use in connection with medical device treatment applicators. The interface provides a cover to protect applicator components against contamination and may be disposable or reusable. Also included are tissue acquisition features including a tissue receiving chamber defined by a bio-barrier with vacuum ports or channels for tissue acquisition. Vacuum balancing is provided to prevent contamination on the applicator side of the bio-barrier. Locking mechanisms are disclosed for ensuring secure attachment between the interface and applicator. Methods of using the applicator-tissue interface in connection with an applicator are also disclosed.
Abstract:
A cancer treatment equipment includes a case (7), a squeeze-type friction head (1) connected to direct current, a stiction friction head (2) of low-middle frequency current, a friction head (3) with magnetic sheet, a medicated gauze pad fixation clamp (4), a medicated gauze pad (5) and a treatment device of RF, microwave or ultrasonic. The squeeze-type friction head (1) connected to direct current, the stiction friction head (2) of low-middle frequency current and the friction head (3) with magnetic sheet are fixed in the case (7) in parallel. The medicated gauze pad (5) is fixed on the medicated gauze pad fixation clamp (4) on the lower part of the case (7).
Abstract:
An RF device has a support structure. An RF electrode, coupled to the support structure, includes conductive and dielectric portions. A cooling member, coupled to the support structure, is configured to cool a back surface of the RF electrode. The cooling member is distanced from the back surface of the RF electrode.
Abstract:
In order to reduce blood flow thereby accumulating additional equivalent thermal dose following the step of heating an organ or appendage by irradiating microwaves at the organ or appendage, the step of compressing the organ or aplpendage following the heating step is added to thertherapy treatment. In a preferred embodiment, the organ is the prostate and periodic prostate compression is employed to reduce the prostate blood flow thereby allowing chemotherapy, thermosensitive liposome-encapsulated chemotherapy, or gene therapy to accumulate in the prostate region during thermotherapy. Doppler ultrasound imaging may be used to measure tumor blood flow rate and then serve as real-time feedback to assist in adjusting the amount of balloon catheter inflation and to assess damage to the tumor vasculature during the treatment.
Abstract:
A method for creating a tissue effect provides a substrate with a releasable coating. At least a portion of the releasable coating is released on a selected skin epidermis surface to create a marked skin epidermis surface. The marked skin surface is used to provide a guide for delivery of energy from an energy source (10) to a tissue site through at least a portion of the marked skin surface.
Abstract:
A fluid delivery apparatus for introducing a fluid cooling media to a skin surface includes a template with a skin interface surface. An energy delivery device is coupled to the template. A fluid cooling media introduction member is coupled to the template. Resources controllably deliver energy from the energy delivery device to the skin surface. In a related embodiment, the resources are configured to controllably deliver the flowable cooling media to the introduction member. In another embodiment, a sensor is coupled to the resources and to the skin surface.
Abstract:
The invention features a method for selectively ablating tumor-forming, glandular tissue in a breast by exposing the breast to microwave radiation that ablates glandular tissue while avoiding damage to the fatty tissues of the breast.