Abstract:
A Metal Oxide Semiconductor (MOS) device formed on a substrate and a method for forming the MOS device. The MOS device includes a drain region, a gate region surrounding the drain region, source regions arranged around the gate region and across from the drain region, and bulk regions arranged around the gate region and separating the source regions. The gate region is formed in a loop around the drain region. In this manner, the on-resistance (Ron) of a MOS device is decreased without also increasing the area of the MOS device.
Abstract:
A system including a first transistor, a second transistor, and a comparator. The first transistor is configured to supply a first current to a first load connected to a first terminal of the first transistor. The second transistor is configured to supply a second current to a second load connected to a first terminal of the second transistor, wherein the first current and the second current have a predetermined ratio. The comparator is configured to compare a voltage at the first terminal of the first transistor or a voltage at the first terminal of the second transistor to a reference voltage, and to adjust, based on the comparison, biasing of the first transistor and the second transistor to maintain the predetermined ratio between the first current and the second current.
Abstract:
Systems, methods, and other embodiments associated with back-EMF detection for motor control are described. In an embodiment, an apparatus includes a drive circuit configured to apply excitation signals to respective inputs of a motor, a signal inhibit circuit configured to convey a signal to inhibit application of the excitation signals during an interval, and a measuring circuit configured to measure a back-electromotive force (EMF) signal crossing a reference signal during the interval.
Abstract:
Systems, methods, and other embodiments associated with back-EMF detection for motor control are described. In an embodiment, an apparatus includes a drive circuit configured to apply excitation signals to respective inputs of a motor, a signal inhibit circuit configured to convey a signal to inhibit application of the excitation signals during an interval, and a measuring circuit configured to measure a back-electromotive force (EMF) signal crossing a reference signal during the interval.
Abstract:
Some of the embodiments of the present disclosure provide a method comprising detecting, based on a sensor and a back electromagnetic force generated in a rotating device, a speed of the rotating device; and based on (i) the speed detected using the sensor or (ii) the speed detected using the back electromagnetic force, driving the rotating device.
Abstract:
A system including a power transistor configured to receive an alternating current (AC) line voltage and a control circuit. During a rising portion of a half cycle of the AC line voltage, the control circuit is configured to turn on the power transistor when the AC line voltage reaches a first value and turn off the power transistor when the AC line voltage reaches a second value. The second value is greater than the first value. During a falling portion of the half cycle, the control circuit is configured to turn on the power transistor when the AC line voltage reaches the second value and turn off the power transistor when the AC line voltage reaches the first value.
Abstract:
Disclosed is flyback converter having a controller that performs a startup switching process when the flyback converter is powered up, and then performs normal switching afterward. The controller includes a pulse generator to generate a control signal for normal switching. During startup switching, the controller may generate a control signal by output every N th pulse from the pulse generator. In another embodiment, the controller may generate pulses based on a sense signal provided from an input section of the flyback converter.
Abstract:
A system including a power transistor configured to receive an alternating current (AC) line voltage and a control circuit. During a rising portion of a half cycle of the AC line voltage, the control circuit is configured to turn on the power transistor when the AC line voltage reaches a first value and turn off the power transistor when the AC line voltage reaches a second value. The second value is greater than the first value. During a falling portion of the half cycle, the control circuit is configured to turn on the power transistor when the AC line voltage reaches the second value and turn off the power transistor when the AC line voltage reaches the first value.
Abstract:
An integrated circuit including a well region (156) having a first doping level and a plurality of semiconductor regions (154) implanted in the well region. Each of the plurality of semiconductor regions has a second doping level greater than the first doping level. A plurality of polysilicon regions (202-1, 202-2, 204-1, 204-2; 302-1, 302-2, 304-1, 304-2) arranged on the plurality of semiconductor regions forms a plurality of ballast resistors. The polysilicon regions are respectively connected to the semiconductor regions, which are degenerated below said polysilicon regions so as to create an additional resistivity. The plurality of semiconductor regions constitutes a drain region of a metal-oxide semiconductor field-effect transistor (MOSFET).
Abstract:
A Metal Oxide Semiconductor (MOS) device formed on a substrate and a method for forming the MOS device. The MOS device includes a drain region, a gate region surrounding the drain region, source regions arranged around the gate region and across from the drain region, and bulk regions arranged around the gate region and separating the source regions. The gate region is formed in a loop around the drain region. In this manner, the on-resistance (Ron) of a MOS device is decreased without also increasing the area of the MOS device.