摘要:
A method for forming a three dimensional device. The method may include directing ions to an end surface of an extension region of a fin structure, the fin structure extending perpendicularly from a substrate plane and having a fin axis parallel to the substrate plane, wherein the ions have trajectories extending in a plane perpendicular to the substrate plane and parallel to the fin axis, wherein a portion of the fin structure is covered by a gate structure defining a channel region, and wherein the end surface is not covered by the gate structure.
摘要:
A technique of reducing leakage energy associated with a post-silicon target circuit is generally described herein. One example method includes purposefully aging a plurality of gates in the target circuit based on a targeted metric including a timing constraint associated with the target circuit.
摘要:
Directed self-assembly (DSA) material, or di-block co-polymer, to pattern features that ultimately define a channel region a gate electrode of a vertical nanowire transistor, potentially based on one lithographic operation. In embodiments, DSA material is confined within a guide opening patterned using convention lithography. In embodiments, channel regions and gate electrode materials are aligned to edges of segregated regions within the DSA material.
摘要:
A semiconductor device structure is disclosed. The semiconductor device structure includes a mesa extending above a substrate. The mesa has a channel region between a first side and second side of the mesa. A first gate is on a first side of the mesa, the first gate comprising a first gate insulator and a first gate conductor comprising graphene overlying the first gate insulator. The gate conductor may comprise graphene in one or more monolayers. Also disclosed are a method for fabricating the semiconductor device structure; an array of vertical transistor devices, including semiconductor devices having the structure disclosed; and a method for fabricating the array of vertical transistor devices.
摘要:
Variation resistant metal-oxide-semiconductor field effect transistors (MOSFETs) are manufactured using a high-K, metal-gate 'channel-last' process. A cavity is formed between spacers formed over a well area having separate drain and source areas, and then a recess into the well area is formed. The active region is formed in the recess, comprising an optional narrow highly doped layer, essentially a buried epitaxial layer, over which a second un-doped or lightly doped layer is formed which is a channel epitaxial layer. The high doping beneath the low doped epitaxial layer can be achieved utilizing low-temperature epitaxial growth with single or multiple delta doping, or slab doping. A high-K dielectric stack is formed over the channel epitaxial layer, over which a metal gate is formed within the cavity boundaries. In one embodiment of the invention a cap of poly-silicon or amorphous silicon is added on top of the metal gate.
摘要:
Methods for fabricating a FinFET structure are provided. One method comprises forming a hard mask layer (204) on a gate-forming material layer (202) having a first portion (218, 230) and a second portion (234, 232). A plurality of mandrels (210) are fabricated on the hard mask layer and overlying the first portion and the second portion of the gate-forming material layer. A sidewall spacer material layer (214) is deposited overlying the plurality of mandrels. The sidewall spacer material layer overlying the first portion of the gate-forming material layer is partially etched. Sidewall spacers (220, 222, 228) are fabricated from the sidewall spacer material layer, the sidewall spacers being adjacent sidewalls of the plurality of mandrels. The plurality of mandrels are removed, the hard mask layer is etched using the sidewall spacers as an etch mask, and the gate-forming material layer is etched using the etched hard mask layer as an etch mask.
摘要:
A transistor structure that increases uniaxial compressive stress on the channel region of a tri-gate transistor comprises at least two semiconductor bodies formed on a substrate, each semiconductor body having a pair of laterally opposite sidewalls and a top surface, a common source region formed on one end of the semiconductor bodies, wherein the common source region is coupled to all of the at least two semiconductor bodies, a common drain region formed on another end of the semiconductor bodies, wherein the common drain region is coupled to all of the at least two semiconductor bodies, and a common gate electrode formed over the at least two semiconductor bodies, wherein the common gate electrode provides a gate electrode for each of the at least two semiconductor bodies and wherein the common gate electrode has a pair of laterally opposite sidewalls that are substantially perpendicular to the sidewalls of the semiconductor bodies.
摘要:
A field effect transistor (FET) includes a plurality of trenches extending into a semiconductor region. Each trench includes a gate electrode and a shield electrode with an inter-electrode dielectric therebetween, wherein the shield electrode and the gate electrode are electrically connected together.
摘要:
In one aspect, there is provided a method of manufacturing a semiconductor device that includes the steps of forming a polysilicon layer over a substrate, forming a silicide layer on the polysilicon layer, and forming a crystalline silicon layer at an interface between the silicide layer and the polysilicon layer prior to patterning the polysilicon and silicide layers. In another aspect, the crystalline silicon layer is formed prior to forming the contact plugs in a contact or window one dielectric layer.