Abstract:
Semiconductor devices and methods for making such devices that contain a 3D channel architecture are described. The 3D channel architecture is formed using a dual trench structure containing with a plurality of lower trenches extending in an x and y directional channels and separated by a mesa and an upper trench extending in a y direction and located in an upper portion of the substrate proximate a source region. Thus, smaller pillar trenches are formed within the main line-shaped trench. Such an architecture generates additional channel regions which are aligned substantially perpendicular to the conventional line-shaped channels. The channel regions, both conventional and perpendicular, are electrically connected by their corner and top regions to produce higher current flow in all three dimensions. With such a configuration, higher channel density, a stronger inversion layer, and a more uniform threshold distribution can be obtained for the semiconductor device. Other embodiments are described.
Abstract:
Semiconductor devices and methods for making such devices that contain a 3D channel architecture are described. The 3D channel architecture is formed using a dual trench structure containing with a plurality of lower trenches extending in an x and y directional channels and separated by a mesa and an upper trench extending in a y direction and located in an upper portion of the substrate proximate a source region. Thus, smaller pillar trenches are formed within the main line-shaped trench. Such an architecture generates additional channel regions which are aligned substantially perpendicular to the conventional line-shaped channels. The channel regions, both conventional and perpendicular, are electrically connected by their corner and top regions to produce higher current flow in all three dimensions. With such a configuration, higher channel density, a stronger inversion layer, and a more uniform threshold distribution can be obtained for the semiconductor device. Other embodiments are described.
Abstract:
The invention relates to a method of operating a communication network, the network comprising a plurality of stations which are able to transmit data to and receive data from one another. The method comprises monitoring, at each station, the transmission path quality between that station and each other station with which that station can communicate. Data corresponding to the monitored path quality is recorded at each station, thereby permitting a transmission power value based on the relevant path quality data to be selected when transmitting data to another station. Thus, the probability of transmitting data to any selected station at an optimum power level is increased. Each station transmits path quality data in its own transmissions as well as local noise/interference data, so that other stations can obtain path quality data for a particular station even if they are out of range of that particular station. The invention extends to communication apparatus which can be used to implement the method.
Abstract:
An adaptative communication system utilizes opportunistic peak-mode transmissions to transmit data between originating and destination stations, via one or more intermediate stations. Each station monitors the activity of other stations in the network, storing connectivity information for use in subsequent transmissions. Each station also sends out probe signals from time to time, to establish which other stations are in range. Messages are then sent across the network from station to station, with confirmation data being transmitted back to the originating station, until the destination station is reached. Old messages, which would otherwise clog the network, are timed out and deleted. A communication network and transceiver apparatus for use in the network are also disclosed.
Abstract:
Disclosed are semiconductor die structures that enable a die having a vertical power device to be packaged in a wafer-level chip scale package where the current-conducting terminals are present at one surface of the die, and where the device has very low on-state resistance. In an exemplary embodiment, a trench and an aperture are formed in a backside of a die, with the aperture contacting a conductive region at the top surface of the die. A conductive layer and/or a conductive body may be disposed on the trench and aperture to electrically couple the backside current-conducting electrode of the device to the conductive region. Also disclosed are packages and systems using a die with a die structure according to the invention, and methods of making dice with a die structure according to the invention.
Abstract:
Disclosed are semiconductor die structures that enable a die having a vertical power device to be packaged in a wafer-level chip scale package where the current-conducting terminals are present at one surface of the die, and where the device has very low on-state resistance. In an exemplary embodiment, a trench and an aperture are formed in a backside of a die, with the aperture contacting a conductive region at the top surface of the die. A conductive layer and/or a conductive body may be disposed on the trench and aperture to electrically couple the backside current-conducting electrode of the device to the conductive region. Also disclosed are packages and systems using a die with a die structure according to the invention, and methods of making dice with a die structure according to the invention.
Abstract:
The invention provides a method of operating a communication network. The network comprises numerous stations, each of which can transmit and receive data in order to transmit messages from originating stations to destination stations opportunistically via intermediate stations. Each station selects one of a number of possible calling channels to transmit probe signals to other stations. The probe signals contain data identifying the station in question and include details of its connectivity to other stations. Other stations receiving the probe signals respond directly or indirectly, thereby indicating both to the probing station and other stations their availability as destination or intermediate stations. The probing station evaluates the direct or indirect responses to identify other stations with which it can communicate optimally. For example, the stations may monitor the cumulative power required to reach another station, thereby defining a power gradient to the other stations, with stations selecting a route through the network which optimises the power gradient. Thus, data throughput through the network is maximised with minimum interference and contention between stations.