摘要:
Bonding compositions are provided herein for bonding a curable fluoroelastomer composition, and preferably a perfluoroelastomer composition, to a substrate during a heat curing process. The compositions include (a) a compound selected from the group consisting of aluminum acrylates, silicon acrylates, ammonia acrylates, and combinations thereof, (b) an adhesive compound; and (c) a solvent. Methods of bonding fluoro- and per- fluoroelastomers to a substrate surface are also including herein which utilize the bonding compositions.
摘要:
Self-bonding curable fluoroelastomer compositions are provided wherein the compositions including a) a fluoropolymer composition having at least one curable fluoropolymer; and b) a compound selected from the group consisting of aluminum acrylates, silicon acrylates, and ammonia acrylates, wherein the self-bonding curable fluoroelastomer composition is able to bond directly to a substrate. Bonded structures formed of such self- bonding compositions and a substrate having a surface bonded thereto are also described herein along with a method for bonding a self-bonding curable fluoroelastomer composition to a substrate surface. The fluoroelastomers herein may encompass both non- fully fluorinated (FKM) and fully fluorinated (FFKM) elastomers.
摘要:
Provided herein is a fluorine-containing elastomer composition having a first curable perfluoropolymer comprising tetrafluoroethylene, at least one perfluoroalkylvinyl ether and at least one cure site monomer having a functional group to permit crosslinking of the perfluoropolymer; and barium titanate.
摘要:
This invention relates to flexible, transparent and conductive coatings and films formed using carbon nanotubes (CNT) and, in particular, single wall carbon nanotubes, with polymer binders. Preferably, coatings and films are formed from carbon nanotubes applied to transparent substrates forming one or multiple conductive layers at nanometer level of thickness. Polymer binders are applied to the CNT network coating having an open structure to provide protection through infiltration. This provides for enhancement of properties such as moisture resistance, thermal resistance, abrasion resistance and interfacial adhesion. Polymers may be thermoplastics or thermosets, or a combination thereof. Polymers may also be insulative or inherently electrical conductive, or any combination of both. Polymers may comprise single or multiple layers as a basecoat underneath a CNT coating, or a topcoat above a CNT coating, or combination of the basecoat and the topcoat forming a sandwich structure. A fluoropolymer containing binder, which is a solution of one fluoropolymer or a blend of fluoropolymers, which may be formulated with additives, is applied onto a carbon nanotube-based transparent conductive coating at nanometer level of thickness on a clear substrate such as PET and glass. The fluoropolymers or blend can be either semi-crystalline (with low level of crystallinity) or amorphous, preferably to be amorphous with low refraction index. Binder coating thickness can be adjusted by changing binder concentration, coating speed and/or other process conditions. This binder coating significantly improves optical transparency, and also maintain or increases conductivity of the CNT-based coating. With other benefits such as abrasion, thermal and moisture resistance, this binder coating and the resulting products is used for display and electronic applications.
摘要:
Bonding compositions are provided herein for bonding a curable fluoroelastomer composition, and preferably a perfluoroelastomer composition, to a substrate during a heat curing process. The compositions include (a) a compound selected from the group consisting of aluminum acrylates, silicon acrylates, ammonia acrylates, and combinations thereof, (b) an adhesive compound; and (c) a solvent. Methods of bonding fluoro- and per- fluoroelastomers to a substrate surface are also including herein which utilize the bonding compositions.
摘要:
The invention is directed to carbon nanotube-containing compositions that have increased viscosity and stability. In particular, the invention is directed to methods for manufacturing carbon nanotube films and layers that provide superior electrical properties.
摘要:
The present invention includes crosslinked perfluoroelastomeric compositions and molded articles formed from a cross-linkable perfluoroelastomeric composition having a first curable perfluoropolymer having a cure site monomer and a second perfluoropolymer having a cure site monomer. The molar ratio of the tetrafluoroethylene monomer to perfluoroalkylvinyl ether in one perfluoropolymer is about 0 to 100 to about 65 to 35 in the perfluoropolymer. The molar ratio of the tetrafluoroethylene monomer to the perfluoroalkylvinyl ether monomer in the second polymer is about 65:35 to about 95:5 in the second perfluoropolymer. The composition further includes a curative. One fluorine-containing elastomer composition herein, having a short crosslinking time, has perfluoroelastomers (A) having a tetrafluoroethylene unit, a perfluoralkylvinyl ether unit (a) and a monomer unit (b) having at least one kind selected from the group consisting of a nitrile group, a carboxyl group and an alkoxycarbonyl group, wherein the composition has two or more kinds of perfluoroelastomers (A) having differing contents of perfluoroalkylvinyl ether unit (a).
摘要:
The invention is directed to carbon nanotube-containing compositions that have increased viscosity and stability. In particular, the invention is directed to methods for manufacturing carbon nanotube films and layers that provide superior electrical properties.
摘要:
The invention is directed to compositions and methods for forming conductive patterned coatings of carbon nanotubes. Patterns are electrically conductive coatings/films made by exploiting self patterning nanostructures composed of electrically conductive materials. The resulting layer is suitable for conducting electricity in applications where a transparent electrode is required. Typical applications include, but are not limited to; LC displays, touch screens, EMI shielding windows, and architectural windows. Films may be highly transparent. In one embodiment, carbon nanotubes are applied to an insulating substrate to form an electrically conductive networks of nanotubes, increases the optical transparency in the visible spectrum while the continuous nanotube phase provides electrical conductivity across the entire surface or patterned area. Through the controlled applications of this self assembled network of nanotubes by means of printing or spraying, patterned areas can be formed to function as electrodes in devices. The use of printing technology to form these electrodes obviates the need for more expensive process such as vacuum deposition and photolithography typically employed today during the formation of ITO coatings.
摘要:
The invention is directed to compositions and methods for forming conductive patterned coatings of carbon nanotubes. Patterns are electrically conductive coatings/films made by exploiting self patterning nanostructures composed of electrically conductive materials. The resulting layer is suitable for conducting electricity in applications where a transparent electrode is required. Typical applications include, but are not limited to; LC displays, touch screens, EMI shielding windows, and architectural windows. Films may be highly transparent. In one embodiment, carbon nanotubes are applied to an insulating substrate to form an electrically conductive networks of nanotubes, increases the optical transparency in the visible spectrum while the continuous nanotube phase provides electrical conductivity across the entire surface or patterned area. Through the controlled applications of this self assembled network of nanotubes by means of printing or spraying, patterned areas can be formed to function as electrodes in devices. The use of printing technology to form these electrodes obviates the need for more expensive process such as vacuum deposition and photolithography typically employed today during the formation of ITO coatings.