Abstract:
A polycrystalline diamond material comprising a mass of diamond particles or grains exhibiting inter-granular bonding and a binder material comprises a non-metallic catalyst material for diamond, the non-metallic catalyst material for diamond comprising at least one nitrogen compound derived from an ammonium compound and/or at least one halide compound.
Abstract:
The invention is for a polycrystalline diamond material comprising a first phase of bonded diamond particles and a second phase interspersed through the first phase. The second phase contains vanadium in the form of the metal or vanadium carbide or vanadium tungsten carbide or two or more of these forms and may be present in the polycrystalline diamond material in the range 1 to 8 percent by mass of the material.
Abstract:
The invention is for a polycrystalline diamond material comprising a first phase of bonded diamond particles and a second phase interspersed through the first phase. The second phase contains vanadium in the form of the metal or vanadium carbide or vanadium tungsten carbide or two or more of these forms and may be present in the polycrystalline diamond material in the range 1 to 8 percent by mass of the material.
Abstract:
A polycrystalline diamond material comprises a mass of diamond particles or grains exhibiting inter-granular bonding and a binder material comprising a non-metallic catalyst material for diamond, the non-metallic catalyst material for diamond being a metal oxoanion, the oxoanion being selected from the group comprising molybdates, tungstates, vanadates, phosphates and mixtures thereof.
Abstract:
A polycrystalline diamond (PCD) material (10) and method for making the PCD material are provided. The PCD so produced comprises a skeletal diamond structure (12) formed of intergrown diamond grains (16) and defines interstitial regions (14) between the diamond grains (16). The skeletal diamond structure contains metal carbide structures or particles (20) that are occluded from the interstitial regions (14) by diamond.
Abstract:
A polycrystalline diamond material comprises a mass of diamond particles or grains exhibiting inter-granular bonding and a binder material comprising a non-metallic catalyst material for diamond, the non-metallic catalyst material for diamond being a metal oxoanion, the oxoanion being selected from the group comprising molybdates, tungstates, vanadates, phosphates and mixtures thereof.
Abstract:
A polycrystalline diamond material comprising a mass of diamond particles or grains exhibiting inter-granular bonding and a binder material comprises a non-metallic catalyst material for diamond, the non-metallic catalyst material for diamond comprising at least one nitrogen compound derived from an ammonium compound and/or at least one halide compound.
Abstract:
A method for making polycrystalline diamond material comprises providing a plurality of diamond particles or grains, coating the diamond particles or grains with a binder material comprising a non-metallic catalyst material for diamond, consolidating the coated diamond particles or grains to form a green body, and subjecting the green body to a temperature and pressure at which diamond is thermodynamically stable, sintering and forming polycrystalline diamond material.
Abstract:
A method for making polycrystalline diamond material comprises providing a plurality of diamond particles or grains, coating the diamond particles or grains with a binder material comprising a non-metallic catalyst material for diamond, consolidating the coated diamond particles or grains to form a green body, and subjecting the green body to a temperature and pressure at which diamond is thermodynamically stable, sintering and forming polycrystalline diamond material.
Abstract:
A PCD body comprises a skeletal mass of inter-bonded diamond grains defining interstices between them. At least some of the interstices contain a filler material comprising a metal catalyst material for diamond, the filler material containing Ti, W and an additional element M selected from the group consisting of V, Y, Nb, Hf, Mo, Ta, Zr Cr, Zr and the rare earth elements. The content of Ti within the filler material is at least 0.1 weight % and at most 20 weight %. The content of M within the filler material is at least 0.1 weight % and at most 20 weight %, and the content of W within the filler material is at least 5 weight % and at most 50 weight % of the filler material.