NEURALPROBE AND METHODS FOR MANUFACTURING SAME
    1.
    发明申请
    NEURALPROBE AND METHODS FOR MANUFACTURING SAME 审中-公开
    神经元及其制造方法

    公开(公告)号:WO2006130794A2

    公开(公告)日:2006-12-07

    申请号:PCT/US2006021338

    申请日:2006-06-01

    CPC classification number: A61B5/04001 A61B2562/028

    Abstract: A neural probe and method of fabricating same are provided. The probe comprises a plurality of frames connected to each other and to a substrate by respective bimorphs. A probe base is connected by another bimorph to the frames. A probe tip extends from the probe base. The probe can achieve a large vertical motion and out-of-plane curling. The probe can operate according to three modes. The first mode pertains to a large-signal motion for tuning in single-unit neuronal activity. The second pertains to a small-signal motion with lock-in amplifier that increases SNR. The third pertains to burst small-signal motion for clearing tissue responses. Fabrication of a neural probe begins with a processed CMOS chip. Post-CMOS processing incorporates self-aligned selective nickel plating and sacrifices two aluminum layers. The fabrication technique produces a neural probe in which the sensing elements are in close proximity to CMOS circuitry. The fabrication technique obviates the need for post-CMOS masks, alignment, or assembly.

    Abstract translation: 提供神经探针及其制造方法。 探针包括通过相应的双压电晶片彼此连接并连接到衬底的多个框架。 探针基座通过另一个双压电晶片连接到框架。 探针尖端从探针底座延伸。 探头可以实现大的垂直运动和平面外卷曲。 探头可以根据三种模式进行操作。 第一种模式涉及用于调整单个单元神经元活动的大信号运动。 第二个涉及具有增加SNR的锁定放大器的小信号运动。 第三种是用于清除组织反应的突发小信号运动。 神经探针的制作以经处理的CMOS芯片开始。 CMOS后处理包括自对准选择性镀镍,牺牲两层铝层。 制造技术产生神经探针,其中感测元件紧邻CMOS电路。 制造技术避免了后CMOS掩模,对准或组装的需要。

    DUL-MODE PIEZOELECTRIC/MAGNETIC VIBRATIONAL ENERGY HARVESTER
    2.
    发明申请
    DUL-MODE PIEZOELECTRIC/MAGNETIC VIBRATIONAL ENERGY HARVESTER 审中-公开
    DUL模式压电/磁力振动能量收集器

    公开(公告)号:WO2009039293A1

    公开(公告)日:2009-03-26

    申请号:PCT/US2008/076879

    申请日:2008-09-18

    CPC classification number: H02N2/186 H02K7/1892 H02K35/02

    Abstract: Embodiments of a vibrational energy harvester are provided. A vibrational energy harvester can include a translator layer sandwiched between two stator layers. The translator layer can include a plate having an array of magnets and two or more piezoelectric patches coupled to a tether beam attached to the plate. The stator layers can have a printed circuit board with multilayer electrical windings situated in a housing. In operation, vibration of the housing can result in bending of the piezoelectric patches coupled to the tether beam. This bending simultaneously results in a relative displacement of the translator, which causes a voltage potential in the piezoelectric patches, and a relative velocity between the translator and the stators, which induces a voltage potential in the stator coils. These voltage potentials generate an AC power, which can be converted to DC power through a rectification circuit incorporating passive and active conversion.

    Abstract translation: 提供振动能量收集器的实施例。 振动能量收集器可以包括夹在两个定子层之间的转换器层。 翻译器层可以包括具有磁体阵列的板和耦合到连接到板的系绳束的两个或更多个压电贴片。 定子层可以具有位于壳体中的多层电绕组的印刷电路板。 在操作中,壳体的振动可导致耦合到系绳束的压电贴片的弯曲。 这种弯曲同时导致转换器的相对位移,其导致压电贴片中的电压电位以及平移器和定子之间的相对速度,其在定子线圈中引起电压电位。 这些电压电位产生一个交流电源,它可以通过整合无源和主动转换的整流电路转换成直流电。

    NEURALPROBE AND METHODS FOR MANUFACTURING SAME

    公开(公告)号:WO2006130794A3

    公开(公告)日:2006-12-07

    申请号:PCT/US2006/021338

    申请日:2006-06-01

    Abstract: A neural probe and method of fabricating same are provided. The probe comprises a plurality of frames connected to each other and to a substrate by respective bimorphs. A probe base is connected by another bimorph to the frames. A probe tip extends from the probe base. The probe can achieve a large vertical motion and out-of-plane curling. The probe can operate according to three modes. The first mode pertains to a large-signal motion for tuning in single-unit neuronal activity. The second pertains to a small-signal motion with lock-in amplifier that increases SNR. The third pertains to burst small-signal motion for clearing tissue responses. Fabrication of a neural probe begins with a processed CMOS chip. Post-CMOS processing incorporates self-aligned selective nickel plating and sacrifices two aluminum layers. The fabrication technique produces a neural probe in which the sensing elements are in close proximity to CMOS circuitry. The fabrication technique obviates the need for post-CMOS masks, alignment, or assembly.

    STRAIN TUNABLE SILICON AND GERMANIUM NANOWIRE OPTOELECTRONIC DEVICES
    4.
    发明申请
    STRAIN TUNABLE SILICON AND GERMANIUM NANOWIRE OPTOELECTRONIC DEVICES 审中-公开
    应变可调硅和锗纳米线光电器件

    公开(公告)号:WO2011044226A3

    公开(公告)日:2011-07-21

    申请号:PCT/US2010051615

    申请日:2010-10-06

    Abstract: Silicon, silicon-germanium alloy, and germanium nanowire optoelectronic devices and methods for fabricating the same are provided. According to one embodiment, a P-I-N device is provided that includes a parallel array of intrinsic silicon, silicon-germanium or germanium nanowires located between a p+ contact and an n+ contact. In certain embodiments, the intrinsic silicon and germanium nanowires can be fabricated with diameters of less than 4.9 nm and 19nm, respectively. In a further embodiment, vertically stacked silicon, silicon-germanium and germanium nanowires can be formed.

    Abstract translation: 提供硅,硅锗合金和锗纳米线光电子器件及其制造方法。 根据一个实施例,提供了一种P-I-N器件,其包括位于p +触点和n +触点之间的本征硅,硅锗或锗纳米线的并联阵列。 在某些实施例中,可以分别制造直径小于4.9nm和19nm的本征硅和锗纳米线。 在另一个实施例中,可以形成垂直堆叠的硅,硅锗和锗纳米线。

    ASYNCHRONOUS FLUIDIC IMPULSE STRAIN-BASED ENERGY HARVESTING SYSTEM
    6.
    发明申请
    ASYNCHRONOUS FLUIDIC IMPULSE STRAIN-BASED ENERGY HARVESTING SYSTEM 审中-公开
    异步流体动力学基础应变能量收集系统

    公开(公告)号:WO2012099814A1

    公开(公告)日:2012-07-26

    申请号:PCT/US2012/021420

    申请日:2012-01-16

    CPC classification number: H02N2/186 H02N2/18

    Abstract: Energy harvesting systems and devices are provided that harvest energy from external asynchronous force impulses using fluidic force transfer of the external force impulses to a plurality of compliant piezoelectric layers that seal a corresponding plurality of inner cavities. Each inner cavity can contain a compressible gas. Direct fluidic force transfer can be accomplished via a compressible or incompressible fluid between an external cover and the compliant piezoelectric layers.

    Abstract translation: 提供了能量收集系统和装置,其利用来自外部的异步力脉冲的能量将外部力脉冲的流体力传递到密封相应的多个内腔的多个顺应的压电层。 每个内腔可以包含可压缩气体。 直接流体力传递可以通过外部盖和柔性压电层之间的可压缩或不可压缩流体来实现。

    MICROELECTROMECHANICAL FLOATING ELEMENT FLOW SENSOR
    8.
    发明申请
    MICROELECTROMECHANICAL FLOATING ELEMENT FLOW SENSOR 审中-公开
    微电子浮选元件流量传感器

    公开(公告)号:WO2005047825A3

    公开(公告)日:2005-11-17

    申请号:PCT/US2004033595

    申请日:2004-10-12

    CPC classification number: H01L21/76898 G01F1/20 G01F1/28 G01F15/024 G01N13/00

    Abstract: An electromechanical floating element shear-stress sensor, which may also be referred to as a flow rate sensor, having one or more transduction mechanisms coupled to a support arm of a floating element wafer such that the transduction mechanisms are normal to the force applied to a top surface of the floating element. The transduction mechanisms may be generally attached to a side surface of one or more arms supporting the floating element and may be coupled together and to a processor using one or more contacts extending form the backside of the floating element sensor. Thus, the floating element shear-stress sensor may have an unobstructed surface past which a fluid may flow. The floating element may also include a temperature sensing system for accounting for affects of temperature on the floating element system.

    Abstract translation: 机电浮动元件剪切应力传感器,其也可以称为流量传感器,其具有耦合到浮动元件晶片的支撑臂的一个或多个换能机构,使得转导机构与施加到 浮动元件的顶面。 转导机构通常可以附接到支撑浮动元件的一个或多个臂的侧表面,并且可以使用从浮动元件传感器的背面延伸的一个或多个触点耦合到处理器。 因此,浮动元件剪切应力传感器可以具有通过流体可以流动的无障碍表面。 浮动元件还可以包括用于考虑浮动元件系统上的温度影响的温度感测系统。

    MICROELECTROMECHANICAL FLOATING ELEMENT FLOW SENSOR
    9.
    发明申请
    MICROELECTROMECHANICAL FLOATING ELEMENT FLOW SENSOR 审中-公开
    微电子机械浮置元件流量传感器

    公开(公告)号:WO2005047825A2

    公开(公告)日:2005-05-26

    申请号:PCT/US2004/033595

    申请日:2004-10-12

    IPC: G01F

    CPC classification number: H01L21/76898 G01F1/20 G01F1/28 G01F15/024 G01N13/00

    Abstract: An electromechanical floating element shear-stress sensor, which may also be referred to as a flow rate sensor, having one or more transduction mechanisms coupled to a support arm of a floating element wafer such that the transduction mechanisms are normal to the force applied to a top surface of the floating element. The transduction mechanisms may be generally attached to a side surface of one or more arms supporting the floating element and may be coupled together and to a processor using one or more contacts extending form the backside of the floating element sensor. Thus, the floating element shear-stress sensor may have an unobstructed surface past which a fluid may flow. The floating element may also include a temperature sensing system for accounting for affects of temperature on the floating element system.

    Abstract translation: 一种机电浮动元件剪应力传感器,其也可以被称为流率传感器,其具有耦合到浮动元件晶片的支撑臂的一个或多个转换机构,使得转换机构 与施加到浮动元件的顶表面的力正交。 转换机构通常可以附接到支撑浮动元件的一个或多个臂的侧表面,并且可以使用从浮动元件传感器的后侧延伸的一个或多个触点耦合在一起并且连接到处理器。 因此,浮动元件剪应力传感器可以具有流体可以流过的无障碍表面。 浮动元件还可以包括用于考虑温度对浮动元件系统的影响的温度感测系统。

Patent Agency Ranking