Abstract:
A neural probe and method of fabricating same are provided. The probe comprises a plurality of frames connected to each other and to a substrate by respective bimorphs. A probe base is connected by another bimorph to the frames. A probe tip extends from the probe base. The probe can achieve a large vertical motion and out-of-plane curling. The probe can operate according to three modes. The first mode pertains to a large-signal motion for tuning in single-unit neuronal activity. The second pertains to a small-signal motion with lock-in amplifier that increases SNR. The third pertains to burst small-signal motion for clearing tissue responses. Fabrication of a neural probe begins with a processed CMOS chip. Post-CMOS processing incorporates self-aligned selective nickel plating and sacrifices two aluminum layers. The fabrication technique produces a neural probe in which the sensing elements are in close proximity to CMOS circuitry. The fabrication technique obviates the need for post-CMOS masks, alignment, or assembly.
Abstract:
Embodiments of a vibrational energy harvester are provided. A vibrational energy harvester can include a translator layer sandwiched between two stator layers. The translator layer can include a plate having an array of magnets and two or more piezoelectric patches coupled to a tether beam attached to the plate. The stator layers can have a printed circuit board with multilayer electrical windings situated in a housing. In operation, vibration of the housing can result in bending of the piezoelectric patches coupled to the tether beam. This bending simultaneously results in a relative displacement of the translator, which causes a voltage potential in the piezoelectric patches, and a relative velocity between the translator and the stators, which induces a voltage potential in the stator coils. These voltage potentials generate an AC power, which can be converted to DC power through a rectification circuit incorporating passive and active conversion.
Abstract:
A neural probe and method of fabricating same are provided. The probe comprises a plurality of frames connected to each other and to a substrate by respective bimorphs. A probe base is connected by another bimorph to the frames. A probe tip extends from the probe base. The probe can achieve a large vertical motion and out-of-plane curling. The probe can operate according to three modes. The first mode pertains to a large-signal motion for tuning in single-unit neuronal activity. The second pertains to a small-signal motion with lock-in amplifier that increases SNR. The third pertains to burst small-signal motion for clearing tissue responses. Fabrication of a neural probe begins with a processed CMOS chip. Post-CMOS processing incorporates self-aligned selective nickel plating and sacrifices two aluminum layers. The fabrication technique produces a neural probe in which the sensing elements are in close proximity to CMOS circuitry. The fabrication technique obviates the need for post-CMOS masks, alignment, or assembly.
Abstract:
Silicon, silicon-germanium alloy, and germanium nanowire optoelectronic devices and methods for fabricating the same are provided. According to one embodiment, a P-I-N device is provided that includes a parallel array of intrinsic silicon, silicon-germanium or germanium nanowires located between a p+ contact and an n+ contact. In certain embodiments, the intrinsic silicon and germanium nanowires can be fabricated with diameters of less than 4.9 nm and 19nm, respectively. In a further embodiment, vertically stacked silicon, silicon-germanium and germanium nanowires can be formed.
Abstract:
(A1+A3, B1-B3, C1-C3) Disclosed herein are microfluidic devices having an array of microfluidic valves and other components to meet the requirement of an antibody array for analyte detection. The microfluidic valves disclosed herein enable simultaneous detection of multiple analytes in a sample. One embodiment exemplified herein pertains to a microarray that is in the format of a sandwich assay, each of which comprises a capture antibody, analyte, and secondary detection antibody conjugated with a fluorescent dye or an enzyme or another moiety to facilitate detection. Methods of using microfluidic valves in an array for simultaneously detecting multiple analytes is also disclosed.
Abstract:
Energy harvesting systems and devices are provided that harvest energy from external asynchronous force impulses using fluidic force transfer of the external force impulses to a plurality of compliant piezoelectric layers that seal a corresponding plurality of inner cavities. Each inner cavity can contain a compressible gas. Direct fluidic force transfer can be accomplished via a compressible or incompressible fluid between an external cover and the compliant piezoelectric layers.
Abstract:
A shear-stress sensing system can include a floating element whose displacement can be detected through use of optical measurements. The system can utilize high temperature materials to deliver the optical signal to the structure to be measured, which can also utilize high temperature materials. In one embodiment, an intensity modulation or phase modulation of a reflected signal can be measured to determine the shear stress. In another embodiment, a Moire fringe pattern can be used to determine the shear stress.
Abstract:
An electromechanical floating element shear-stress sensor, which may also be referred to as a flow rate sensor, having one or more transduction mechanisms coupled to a support arm of a floating element wafer such that the transduction mechanisms are normal to the force applied to a top surface of the floating element. The transduction mechanisms may be generally attached to a side surface of one or more arms supporting the floating element and may be coupled together and to a processor using one or more contacts extending form the backside of the floating element sensor. Thus, the floating element shear-stress sensor may have an unobstructed surface past which a fluid may flow. The floating element may also include a temperature sensing system for accounting for affects of temperature on the floating element system.
Abstract:
An electromechanical floating element shear-stress sensor, which may also be referred to as a flow rate sensor, having one or more transduction mechanisms coupled to a support arm of a floating element wafer such that the transduction mechanisms are normal to the force applied to a top surface of the floating element. The transduction mechanisms may be generally attached to a side surface of one or more arms supporting the floating element and may be coupled together and to a processor using one or more contacts extending form the backside of the floating element sensor. Thus, the floating element shear-stress sensor may have an unobstructed surface past which a fluid may flow. The floating element may also include a temperature sensing system for accounting for affects of temperature on the floating element system.
Abstract:
Silicon, silicon-germanium alloy, and germanium nanowire optoelectronic devices and methods for fabricating the same are provided. According to one embodiment, a P-I-N device is provided that includes a parallel array of intrinsic silicon, silicon-germanium or germanium nanowires located between a p+ contact and an n+ contact. In certain embodiments, the intrinsic silicon and germanium nanowires can be fabricated with diameters of less than 4.9 nm and 19nm, respectively. In a further embodiment, vertically stacked silicon, silicon-germanium and germanium nanowires can be formed.