Abstract:
Apparatuses, methods and storage medium associated with creating an avatar video are disclosed herein. In embodiments, the apparatus may one or more facial expression engines, an animation-rendering engine, and a video generator. The one or more facial expression engines may be configured to receive video, voice and/or text inputs, and, in response, generate a plurality of animation messages having facial expression parameters that depict facial expressions for a plurality of avatars based at least in part on the video, voice and/or text inputs received. The animation-rendering engine may be configured to receive the one or more animation messages, and drive a plurality of avatar models, to animate and render the plurality of avatars with the facial expression depicted. The video generator may be configured to capture the animation and rendering of the plurality of avatars, to generate a video. Other embodiments may be described and/or claimed.
Abstract:
Avatar animation systems disclosed herein provide high quality, real-time avatar animation that is based on the varying countenance of a human face. The real-time provision of high quality avatar animation is enabled, at least in part, by a multi-frame regressor that is configured to map information descriptive of facial expressions depicted in two or more images to information descriptive of a single avatar blend shape. The two or more images may be temporally sequential images. This multi-frame regressor implements a machine learning component that generates the high quality avatar animation from information descriptive of a subject's face and/or information descriptive of avatar animation frames previously generated by the multi-frame regressor. The machine learning component may be trained using a set of training images that depict human facial expressions and avatar animation authored by professional animators to reflect facial expressions depicted in the set of training images.
Abstract:
A mechanism is described for facilitating efficient free in-plane rotation landmark tracking of images on computing devices according to one embodiment. A method of embodiments, as described herein, includes detecting a first frame having a first image and a second frame having a second image, where the second image is rotated to a position away from the first image. The method may further include assigning a first parameter line and a second parameter line to the second image based on landmark positions associated with the first and second images, detecting a rotation angle between the first parameter line and the second parameter line, and rotating the second image back and forth within a distance associated with the rotation angle to verify positions of the first and second images.
Abstract:
Examples of systems and methods for augmented facial animation are generally described herein. A method for mapping facial expressions to an alternative avatar expression may include capturing a series of images of a face, and detecting a sequence of facial expressions of the face from the series of images. The method may include determining an alternative avatar expression mapped to the sequence of facial expressions, and animating an avatar using the alternative avatar expression.
Abstract:
Apparatuses, methods and storage medium associated with 3D face model reconstruction are disclosed herein. In embodiments, an apparatus may include a facial landmark detector, a model fitter and a model tracker. The facial landmark detector may be configured to detect a plurality of landmarks of a face and their locations within each of a plurality of image frames. The model fitter may be configured to generate a 3D model of the face from a 3D model of a neutral face, in view of detected landmarks of the face and their locations within a first one of the plurality of image frames. The model tracker may be configured to maintain the 3D model to track the face in subsequent image frames, successively updating the 3D model in view of detected landmarks of the face and their locations within each of successive ones of the plurality of image frames. In embodiments, the facial landmark detector may include a face detector, an initial facial landmark detector, and one or more facial landmark detection linear regressors. Other embodiments may be described and/or claimed.
Abstract:
Apparatuses, methods and storage medium associated with animating and rendering an avatar are disclosed herein. In embodiments, an apparatus may include a facial mesh tracker to receive a plurality of image frames, detect facial action movements of a face and head pose gestures of a head within the plurality of image frames, and output a plurality of facial motion parameters and head pose parameters that depict facial action movements and head pose gestures detected, all in real time, for animation and rendering of an avatar. The facial action movements and head pose gestures may be detected through inter-frame differences for a mouth and an eye, or the head, based on pixel sampling of the image frames. The facial action movements may include opening or closing of a mouth, and blinking of an eye. The head pose gestures may include head rotation such as pitch, yaw, roll, and head movement along horizontal and vertical direction, and the head comes closer or goes farther from the camera. Other embodiments may be described and/or claimed.