Abstract:
A protected organic light emitting diode (200) includes an organic light emitting diode structure formed on a substrate (10), a hermetic barrier layer (8) formed over at least part of the organic light emitting diode structure, and a light extraction layer (12). The barrier layer (8) may include a glass material such as a tin fluorophosphate glass, a tungsten-doped tin fluorophosphate glass, a chalcogenide glass, a tellurite glass, a borate glass or a phosphate glass. The light extraction layer (12), which may be formed over the barrier layer (8), includes a high refractive index matrix material (16) and at least one of scattering particles (14) dispersed throughout the matrix material (16) and a roughened surface.
Abstract:
Durable antireflective coatings and glass articles having such coatings are described herein. The antireflective coatings generally include a layer of nominally hexagonally packed nanoparticles that are partially embedded either in a surface of the glass article or in a binder that is on the surface of the glass article. Methods of making the antireflective coatings or layers and glass articles having such antireflective layers are also described.
Abstract:
A free-standing multi-laminate hermetic sheet includes a first carrier film, a hermetic inorganic thin film formed over the first carrier film, and a second carrier film formed over the hermetic inorganic thin film. A workpiece can be hermetically sealed using the multi-laminate sheet, which can be applied to the workpiece in a step separate from a formation step of either the multi-laminate sheet or the workpiece.
Abstract:
A multi-layer thin film laminate comprises a dyad layer including a barrier layer and a decoupling layer formed over a substrate. The barrier layer comprises a hermetic glass material selected from the group consisting of tin fluorophosphate glasses, tungsten-doped tin fluorophosphate glasses, chalcogenide glasses, tellurite glasses, borate glasses and phosphate glasses and the decoupling layer comprises a polymer material.
Abstract:
An organic light emitting diode comprising a light extraction substructure and a diode superstructure is provided. The light extraction substructure comprises a light expulsion matrix distributed over discrete light extraction waveguide elements and a waveguide surface of the glass substrate. The light expulsion matrix is distributed at varying thicknesses to enhance the planarity of a diode superstructure-engaging side of the light extraction substructure and to provide light expulsion sites at the waveguide element termination points of the discrete light extraction waveguide elements. In operation, light originating in the organic light emitting semiconductor material of the diode superstructure is coupled to the discrete waveguide elements of the light extraction substructure as respective coupled modes characterized by an approximate coupling length defined as the propagation distance required for an optical mode to be coupled from the superstructure waveguide to one of the discrete waveguide elements of the light extraction substructure.
Abstract:
A method of making a glass article, for example a glass light guide plate comprising at least one structured surface including a plurality of channels and peaks. The glass article may be suitable for enabling one dimensional dimming when used in a backlight unit for use as an illuminator for liquid crystal display devices.
Abstract:
Methods for fabricating a nanopillared substrate surface include applying a polymer solution containing an amphiphilic block copolymer and a hydrophilic homopolymer to a substrate surface. The amphiphilic block copolymer and the hydrophilic homopolymer in the polymer solution self-assemble on the substrate surface to form a self-assembled polymer layer having hydrophobic domains adjacent to the substrate surface and hydrophilic domains extending into the self-assembled polymer layer. At least a portion of the hydrophilic domains may be removed to form a plurality of pores in the exposed surface of the self-assembled polymer layer. A protective layer may be deposited on the exposed surface as a mask for etching through the plurality of pores to form through-holes. A nanopillar-forming material may be deposited onto the substrate surface via the through-holes. Then, the remaining portion of the self-assembled polymer layer may be removed to expose a nanopillared substrate surface.
Abstract:
A method of forming a hermetic barrier layer comprises sputtering a thin film from a sputtering target, wherein the sputtering target includes a sputtering material such as a low Tg glass, a precursor of a low Tg glass, or an oxide of copper or tin. During the sputtering, the formation of defects in the barrier layer are constrained to within a narrow range and the sputtering material is maintained at a temperature of less than 200°C.
Abstract:
Transparent glass-to-glass hermetic seals are formed by providing a low melting temperature sealing glass along a sealing interface between two glass substrates and irradiating the interface with laser radiation. Absorption by the sealing glass and induced transient absorption by the glass substrates along the sealing interface causes localized heating and melting of both the sealing glass layer and the substrate materials, which results in the formation of a glass-to-glass weld. Due to the transient absorption by the substrate material, the sealed region is transparent upon cooling.
Abstract:
A glass-coated gasket (212) comprises a gasket main body (116) defining an inner hole (114) and having a first contact (118) surface and a second contact surface (119) opposite the first contact surface (118), and a glass layer formed over at least a portion of one of the first contact surface (118) and the second contact surface (119). The glass layer comprises a low melting temperature glass. A hermetic package comprises a substrate/glass-coated gasket/substrate structure that can be sealed using a thermo-compressive sealing step.