Abstract:
A system for monitoring water quality for dialysis, dialysis fluids, and body fluids treated by dialysis fluids, is disclosed. The system uses microelectromechanical systems (MEMS) sensors for detecting impurities in input water or dialysis fluid, and in the prepared dialysate. These sensors may also be used to monitor and check the blood of the patient being treated. These sensors include ion-selective sensors, for ions such as ammonium or calcium, and also include amperometric array sensors, suitable for ions from chlorine or chloramines, e.g., chloride. These sensors assist in the monitoring of water supplies from a city water main or well. The sensors may be used in conjunction with systems for preparing dialysate solutions from water for use at home or elsewhere.
Abstract:
Systems and methods for removing hydrogen peroxide from water purification systems are provided. In a general embodiment, the present disclosure provides a water purification system including a water treatment unit, an electrodeionization unit and a hydrogen peroxide decomposition catalyst in fluid connection with the electrodeionization unit. The water purification system can be fluidly connected to a renal treatment system.
Abstract:
A dialysis system includes a first fluid heater, a second fluid heater, and a logic implementer configured to synchronize the duty cycles of the first and second heaters so that (i) power is not supplied to the first heater when power is supplied to the second heater and (ii) power is not supplied to the second heater when power is supplied to the first heater.
Abstract:
Systems and methods for removing hydrogen peroxide from water purification systems are provided. In a general embodiment, the present disclosure provides a water purification system including a water treatment unit, an electrodeionization unit and a hydrogen peroxide decomposition catalyst in fluid connection with the electrodeionization unit. The water purification system can be fluidly connected to a renal treatment system.
Abstract:
A dialysis system includes a dialysis machine with a variable fluid demand including at least a lower demand and a higher demand. A fluid source is in fluid communication with the dialysis machine and provides fluid to the dialysis machine at a fluid flow rate. A flow regulation device includes a fluid inlet in fluid communication with the fluid source and a fluid outlet in fluid communication with the dialysis machine. The flow regulation device is operable to expand and contract to provide a variable internal volume. The flow regulation device expands when the dialysis machine has the lower demand and contracts when the dialysis machine has the higher demand.
Abstract:
A dialysis system includes a dialysis machine with a variable fluid demand including at least a lower demand and a higher demand. A fluid source is in fluid communication with the dialysis machine and provides fluid to the dialysis machine at a fluid flow rate. A flow regulation device includes a fluid inlet in fluid communication with the fluid source and a fluid outlet in fluid communication with the dialysis machine. The flow regulation device is operable to expand and contract to provide a variable internal volume. The flow regulation device expands when the dialysis machine has the lower demand and contracts when the dialysis machine has the higher demand.
Abstract:
Systems and methods for removing hydrogen peroxide from water purification systems are provided. In a general embodiment, the present disclosure provides a water purification system including a water treatment unit, an electrodeionization unit and a hydrogen peroxide decomposition catalyst in fluid connection with the electrodeionization unit. The water purification system can be fluidly connected to a renal treatment system.
Abstract:
A dialysis system includes a first fluid heater, a second fluid heater, and a logic implementer configured to synchronize the duty cycles of the first and second heaters so that (i) power is not supplied to the first heater when power is supplied to the second heater and (ii) power is not supplied to the second heater when power is supplied to the first heater.
Abstract:
A dialysis system includes a first fluid heater, a second fluid heater, and a logic implementer configured to synchronize the duty cycles of the first and second heaters so that (i) power is not supplied to the first heater when power is supplied to the second heater and (ii) power is not supplied to the second heater when power is supplied to the first heater.
Abstract:
A dialysis system (10a) includes: a water purification unit (22); a dialysate generation unit (24) configured to use water purified by the water purification unit; a dialysate delivery unit (30) configured to deliver dialysate prepared by the dialysate generation unit; a supplemental power source (14); a first electrical connection (44a) configured to electrically connect a branch power source with at least one of the water purification unit, the dialysate generation unit and the dialysate delivery unit; and a second electrical connection (44c) configured to electrically connect the supplemental power source with at least one of the water purification unit, the dialysate generation unit and the dialysate delivery unit.