Abstract:
Of the many compositions and methods provided herein, one method includes providing a settable fluid that comprises an aqueous-based medium, a lime composition, and a cementitious blend that comprises metakaolin particulates and aluminosilicate particulates, wherein the cementitious blend is essentially free of Portland cement; introducing the settable fluid into a wellbore penetrating a subterranean formation that comprises a corrosive component; and allowing the settable fluid to set therein.
Abstract:
A variety of methods and compositions are disclosed, including, in one embodiment, a method of treating a subterranean formation comprising introducing a treatment fluid into a well bore, wherein the treatment fluid comprises a particulate elastomer having a specific gravity of at least about 1.6. Another method of treating a subterranean formation comprises introducing a treatment fluid into a well bore, wherein the treatment fluid comprises a particulate elastomer having a specific gravity of at least about 1.05, wherein the particulate elastomer comprises a halogenated thermoplastic. Treatment fluids, methods of cementing, and cement compositions are also provided herein.
Abstract:
Substantially non-porous particulates formed from a starting mixture comprising at least one igneous or metamorphic material and which are suitable for use in subterranean operations such as gravel packing, frac-packing, and hydraulic fracturing and methods of using such particulates. Methods of using such particulates include fracturing, frac-packing, and gravel packing.
Abstract:
A method of servicing a wellbore comprising placing a wellbore servicing fluid comprising a density segregation inhibitor composite into the wellbore, wherein the density segregation inhibitor composite comprises a high density additive and a low density additive; and wherein the high density additive comprises barium sulfate, iron oxide, manganese oxide, or combinations thereof. A method of inhibiting segregation of particles in a wellbore servicing fluid comprising preparing a composite material comprising a high density additive and a low density additive, wherein the low density additive comprises an elastomer which can increase in volume by greater than about 300% based on its original volume when contacted with a fluid.
Abstract:
The disclosure relates to a wellbore sealant composition comprising a cementitious material and a cationic latex, and to a method of servicing a wellbore in contact with a subterranean formation, comprising: placing the sealant composition in the wellbore.
Abstract:
Methods of isolating particular zones within a subterranean formation utilizing self-degrading cement compositions are provided. An example of a method of the present invention is a method that includes: providing a self-degrading cement composition that includes a degradable material, an acid source, a base source, and a water source; placing the self-degrading cement composition in a zone within a subterranean formation; and allowing the self-degrading cement composition to set to form a solid mass that is capable of isolating the zone from a well bore penetrating the zone or from another zone.
Abstract:
Methods of using cement compositions comprising phosphate compounds in subterranean formations are provided. An example of a method is a method of cementing in a subterranean formation. Other examples of methods include methods of avoiding the loss of circulation in a subterranean formation. Other examples of methods include methods of drilling in a subterranean formation.
Abstract:
Zeolite and Class F fly ash compositions are provided for use as cement-free settable fluids such as settable spotting fluids and cementitious compositions.
Abstract:
A method of servicing a wellbore comprising placing in the wellbore a cement composition comprising light-burned magnesium oxide, water and an alkaline metal chloride, and allowing the composition to set. A method of cementing comprising preparing a cement composition comprising a light-burned magnesium oxide, water and an alkaline metal chloride, and allowing the composition to set.
Abstract:
According to various embodiments, gas-generating additives for use in a cement composition comprise: a gas-generating material at least partially coated with a mixture comprising a fatty acid ester of sorbitan, glycerol, or pentaerythritol and having a shelf life of about 12 months or greater. The gas-generating additives may also include a C 8 -C 18 hydrocarbon. In more embodiments, cement compositions comprise: a gas-generating material at least partially coated with a mixture comprising a fatty acid ester of sorbitan, glycerol, or pentaerythritol and a C 8 -C 18 hydrocarbon for increasing a shelf life of the gas-generating material. In yet more embodiments, cement compositions comprise: a cement; a fluid for making the cement composition pumpable; a hydrogen-generating material at least partially coated with a mixture for delaying a hydrogen-generating reaction, the mixture comprising sorbitan monooleate and an isoparaffin.