摘要:
The present invention relates to plastic composites that have been manufactured from post-industrial absorbent waste material. The waste material is transformed into densified particles that comprises from about 0% to about 65% of an absorbent core material, about 20% to about 45% of thermoplastic polymer, about 0% to about 10% inorganic filler particles, about 0% to about 10% elastics, and about 0% to about 10% adhesives. Also provided is a method for manufacturing a plastic composite by extruding or injection molding densified particles that have been formed from the post-industrial absorbent waste material.
摘要:
An absorbent article comprising an absorbent member positioned between a topsheet and a backsheet is provided. The absorbent member contains at least one layer that comprises porous superabsorbent particles, wherein the particles exhibit a relative humidity microclimate of about 67% or less after being exposed to an atmosphere having a temperature of about 23°C and relative humidity of 80% for a time period of 20 minutes.
摘要:
A hollow fiber that generally extends in a longitudinal direction is provided. The hollow fiber comprises a hollow cavity that extends along at least a portion of the fiber in the longitudinal direction. The cavity is defined by an interior wall that is formed from a thermoplastic composition containing a continuous phase that includes a polyolefin matrix polymer and a nanoinclusion additive dispersed within the continuous phase in the form of discrete domains. A porous network is defined in the composition that includes a plurality of nanopores.
摘要:
A melt-processed protein composition formed from a protein, plasticizer, and an electrophilic reagent is provided. The electrophilic reagent, for instance, may be selected to undergo a nucleophilic addition reaction with free sulfhydryl and/or thiyl radicals to help minimize the formation of disulfide crosslinking bonds that could otherwise lead to protein aggregation during melt processing. To enhance the degree to which the electrophilic reagent can limit crosslinking, a plasticizer is also employed that helps to mediate the adsorption of the electrophilic reagent into the internal structure of the protein, where it can be more stably retained. Furthermore, the temperature and shear rate employed during melt blending may also be selected to be relatively low to help limit polypeptide dissociation, thereby minimizing the impact of aggregation and embrittlement.
摘要:
An oil-in-water emulsion that is environmentally friendly and also exhibits antimicrobial activity is provided. More specifically, the oil phase of the emulsion includes a botanical oil derived from a plant (e.g., thymol, carvacrol, etc.). Because the botanical oil tends to leach out of the emulsion during storage and before it is used in the desired application, a water-dispersible polymer is also employed in the aqueous phase of the emulsion to enhance long term stability of the oil and, in turn, antimicrobial efficacy. Without intending to be limited by theory, it is believed that the water-dispersible polymer can effectively encapsulate the botanical oil within the emulsion and inhibit its premature release. Once the emulsion is formed, water can then be removed so that it becomes a substantially anhydrous concentrate. In this manner, the water-dispersible polymer will not generally disperse before use and prematurely release the botanical oil. When it is desired, moisture may simply be re-applied to the concentrate to disperse the polymer and activate the release of the botanical oil. Of course, to provide the optimum degree of biocompatibility, the water-dispersible polymer is also a "biopolymer" that is biodegradable and/or renewable.
摘要:
A method for forming an antimicrobial composition that includes mixing an antimicrobially active botanical oil (e.g., thymol, carvacrol, etc.) and protein within a melt blending device (e.g., extruder) is provided. Despite the problems normally associated with melt processing proteins, the present inventors have discovered that the processing conditions and components may be selectively controlled to allow for the formation of a stable, melt-processed composition that is able to exhibit good mechanical properties. For example, the extrusion temperature(s) and shear rate employed during melt blending are relatively low to help limit polypeptide dissociation, thereby minimizing the impact of aggregation and embrittlement. While the use of such low temperature/shear conditions often tend to reduce mixing efficiency, the present inventors have discovered that a carrier fluid may be employed to enhance the ability of the botanical oil to flow into the internal structure of the protein where it can be retained in a stable manner. The composition is also typically anhydrous and generally free of solvents. In this manner, the protein will not generally disperse before use and prematurely release the botanical oil.
摘要:
A method for forming an antimicrobial composition that includes mixing an antimicrobially active botanical oil (e.g., thymol, carvacrol, etc.) and protein within a melt blending device (e.g., extruder) is provided. Despite the problems normally associated with melt processing proteins, the present inventors have discovered that the processing conditions and components may be selectively controlled to allow for the formation of a stable, melt-processed composition that is able to exhibit good mechanical properties. For example, the extrusion temperature(s) and shear rate employed during melt blending are relatively low to help limit polypeptide dissociation, thereby minimizing the impact of aggregation and embrittlement. While the use of such low temperature/shear conditions often tend to reduce mixing efficiency, the present inventors have discovered that a carrier fluid may be employed to enhance the ability of the botanical oil to flow into the internal structure of the protein where it can be retained in a stable manner. The composition is also typically anhydrous and generally free of solvents. In this manner, the protein will not generally disperse before use and prematurely release the botanical oil.
摘要:
An oil absorbing material is provided. The oil absorbing material can includes sorbent particles having an average aspect ratio of about 5 to about 500 and a mean average particle diameter of about 10 pm to about 1 millimeter. The oil absorbing material comprises polypropylene, polyethylene, inorganic filler particles, and absorbent core material. In one embodiment, the sorbent particles can have an average specific surface area of about 0.25 to about 5.0 m2/g and can have a bulk density that is about 0.01 g/cm3 to about 0.8 g/cm3. Processes of making the oil absorbing material are also provided via a solid-state shear pulverization recycling process transforming absorbent article waste into the oil absorbing material. The process can include pulverizing the absorbent article waste to form sorbent particles while cooling the absorbent article waste in an amount sufficient to maintain the absorbent article waste in a solid state.
摘要翻译:提供吸油材料。 吸油材料可以包括具有约5至约500的平均纵横比和约10μm至约1毫米的平均平均粒径的吸附剂颗粒。 吸油材料包括聚丙烯,聚乙烯,无机填料颗粒和吸收芯材料。 在一个实施方案中,吸附剂颗粒可以具有约0.25至约5.0m 2 / g的平均比表面积,并且可以具有约0.01g / cm 3至约0.8g / cm 3的堆积密度。 制备吸油材料的方法也通过固体剪切粉碎再循环方法提供,将吸收制品废物转化成吸油材料。 该方法可以包括将吸收制品废物粉碎以形成吸附剂颗粒,同时以足以将吸收制品的废物保持在固体状态的量来冷却吸收制品废物。
摘要:
A method for forming a composition that includes mixing an antimicrobially active botanical oil (e.g., thymol, carvacrol, etc.) and a modified starch polymer within a melt blending device (e.g., extruder) is provided. Unlike the problems associated with proteins, the use of starch polymers allows for a greater degree of flexibility in the processing conditions and is still able to achieve good properties in the resulting composition. The present inventors have also discovered that a plasticizer may be employed to facilitate melt processing of the starch, as well as to enhance the ability of the botanical oil to flow into the internal structure of the starch where it can be retained in a stable manner. The composition is also typically generally free of solvents. In this manner, the starch will not generally disperse before use and prematurely release the botanical oil. Due to the water sensitivity of the modified starch, however, it may be subsequently dispersed by moisture when it is desired to release the botanical oil.
摘要:
A method for forming a composition that includes mixing an antimicrobially active botanical oil (e.g., thymol, carvacrol, etc.) and a modified starch polymer within a melt blending device (e.g., extruder) is provided. Unlike the problems associated with proteins, the use of starch polymers allows for a greater degree of flexibility in the processing conditions and is still able to achieve good properties in the resulting composition. The present inventors have also discovered that a plasticizer may be employed to facilitate melt processing of the starch, as well as to enhance the ability of the botanical oil to flow into the internal structure of the starch where it can be retained in a stable manner. The composition is also typically generally free of solvents. In this manner, the starch will not generally disperse before use and prematurely release the botanical oil. Due to the water sensitivity of the modified starch, however, it may be subsequently dispersed by moisture when it is desired to release the botanical oil.