Abstract:
Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-Crel-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-Crel-derived meganuclease business.
Abstract:
Disclosed are rationally-designed, non-naturally-occurring meganucleases in which a pair of enzyme subunits having specificity for different recognition sequence half-sites are joined into a single polypeptide to form a functional heterodimer with a non- palindromic recognition sequence. The invention also relates to methods of producing such meganucleases, and methods of producing recombinant nucleic acids and organisms using such meganucleases.
Abstract:
Rationally-designed LAGLIDADG meganucleases and methods of making such meganucleases are provided. In addition, methods are provided for using the meganucleases to generate recombinant cells and organisms having a desired DNA sequence inserted into a limited number of loci within the genome, as well as methods of gene therapy, for treatment of pathogenic infections, and for in vitro applications in diagnostics and research.
Abstract:
Methods of making a targeted modification in a male fertility gene in the genome of a plant are disclosed. The methods involve contacting a plant cell with an engineered double-strand-break-inducing agent capable of inducing a double-strand break in a target sequence in the male fertility gene and identifying a cell comprising an alteration in the target sequence. Also disclosed are plants, plant cells, plant parts, and seeds comprising a male fertility gene with an alteration in a male fertility gene. Nucleic acid molecules comprising male fertility genes with at least one targeted modification therein, optimized nucleic acid molecules encoding endonucleases that are engineered double-strand- break-inducing agents and expression cassettes, host cells, and plants comprising one or more of the nucleic acid molecules are further disclosed.
Abstract:
Methods for producing in a plant a complex transgenic trait locus comprising at least two altered target sequences in a genomic region of interest are disclosed. The methods involve the use of two or more double-strand-break- inducing agents, each of which can cause a double-strand break in a target sequence in the genomic region of interest which results in an alteration in the target sequence. Also disclosed are complex transgenic trait loci in plants. A complex transgenic trait locus comprises at least two altered target sequences that are genetically linked to a polynucleotide of interest. Plants, plant cells, plant parts, and seeds comprising one or more complex transgenic trait loci are also disclosed.
Abstract:
Methods of inserting genes into defined locations in the chromosomal DNA of cultured mammalian cell lines which are subject to gene amplification are disclosed. In particular, sequences of interest (e.g., genes encoding biotherapeutic proteins) are inserted proximal to selectable genes in amplifiable loci, and the transformed cells are subjected to selection to induce co-amplification of the selectable gene and the sequence of interest. The invention also relates to meganucleases, vectors and engineered cell lines necessary for performing the methods, to cell lines resulting from the application of the methods, and use of the cell lines to produce protein products of interest.
Abstract:
Methods of inserting genes into defined locations in the chromosomal DNA of cultured mammalian cell lines which are subject to gene amplification are disclosed. In particular, sequences of interest (e.g., genes encoding biotherapeutic proteins) are inserted proximal to selectable genes in amplifiable loci, and the transformed cells are subjected to selection to induce co-amplification of the selectable gene and the sequence of interest. The invention also relates to meganucleases, vectors and engineered cell lines necessary for performing the methods, to cell lines resulting from the application of the methods, and use of the cell lines to produce protein products of interest.
Abstract:
Methods for producing in a plant a complex transgenic trait locus comprising at least two altered target sequences in a genomic region of interest are disclosed. The methods involve the use of two or more double-strand-break- inducing agents, each of which can cause a double-strand break in a target sequence in the genomic region of interest which results in an alteration in the target sequence. Also disclosed are complex transgenic trait loci in plants. A complex transgenic trait locus comprises at least two altered target sequences that are genetically linked to a polynucleotide of interest. Plants, plant cells, plant parts, and seeds comprising one or more complex transgenic trait loci are also disclosed.
Abstract:
The invention relates to the field of molecular biology and recombinant nucleic acid technology. In particular, the invention relates to a rationally-designed, non-naturally- occurring meganuclease with altered DNA recognition sequence specificity which recognizes and cleaves a unique DNA site in the maize genome. The invention also relates to methods of producing engineered maize plants using such meganuc leases.
Abstract:
Rationally-designed LAGLIDADG meganucleases and methods of making such meganucleases are provided. In addition, methods are provided for using the meganucleases to generate recombinant cells and organisms having a desired DNA sequence inserted into a limited number of loci within the genome, as well as methods of gene therapy, for treatment of pathogenic infections, and for in vitro applications in diagnostics and research.