Abstract:
A needle type fuel injector has a needle control chamber at a pressure subject to a control valve in a control valve chamber which in an opening phase is lifted from its seat to expose the control valve chamber, connecting passages, and needle control chamber to a low pressure drain and in a closing phase is urged against the seat to isolate the control valve chamber, connecting passages, and needle control chamber from the drain. Resistance to the flow or displacement of fuel through the control valve seat is provided by a pressure regulating valve as the control valve rapidly closes against its seat, thereby reducing the rate of closure and thus the impact of the control valve on the seat.
Abstract:
A fuel filter cartridge includes a housing having first and second shell sections. The shell sections are generally symmetric about a cartridge axis and joined together. The first shell section has a convex-shape when viewed from a side and includes an end portion, a cylindrical side wall portion, and a transition portion connecting the side wall portion to the end portion. The end portion has an end surface forming a cartridge opening coaxial with the cartridge axis. The transition portion has a radius of 0.125-1.125 inches. A filter having at least one filter element is disposed within the housing.
Abstract:
A damper assembly for a fuel pump includes at least one diaphragm assembly formed by joining two metal diaphragms to respective two sides of an imperforate central plate, thereby creating a pair of closely spaced diaphragms, each acting upon its own gas volume. Preferably, the diaphragm assembly has (a) a circular or polygonal central plate, (b) a first circular diaphragm having a rim portion sealingly secured as by welding to the plate and a relatively thin, flexible, convex portion projecting from one side of the plate and defining a first pressurized gas volume, and (c) a second circular diaphragm having a rim portion sealingly secured as by welding to the plate and a relatively thin, flexible, convex portion projecting from the other side of the plate and defining an independent second pressurized gas volume. The diaphragm assembly can be supported radially inside, outside, or on the weld.
Abstract:
A filter assembly includes a header, a bowl and a replaceable filter element. The bowl is indexed to have a single installed orientation with respect to the header. The filter element is keyed and indexed to both the bowl and the header, with index structures on the filter element engaging complementary coding structures on both the bowl and the header to define a single installed orientation of the filter element with respect to the filter assembly. The filter element lower end cap includes a notch and the filer media defines a longitudinal channel corresponding in position and configuration to the notch in the lower end cap. The lower end cap and channel in the filter media engage a protrusion inside the bowl. The bowl maintains angular orientation (prevents twisting) of the upper and lower end caps when the filter media is exposed to high differential pressures.
Abstract:
A diverter module is incorporated into a filter cartridge. The module employs a radial passage which diverts fluid to be filtered to the radial periphery of a filter element. The filtered fluid flows inwardly and axially through a transfer passage for discharge from the filter cartridge.
Abstract:
A filter assembly employs radial interference between the received portion (12) of a filter cartridge housing (12, 14) and the receptacle (87) of a base (80). Radial interference occurs between a tapered end cap (12) of the filter cartridge (10) and a substantially cylindrical inside surface (95) of the base receptacle (87). The filter cartridge end cap (12) is tapered such that the interference increases as the cartridge is urged into the receptacle by a retaining collar (100). The tight fit improves resistance to vibration and shock applied to the filter assembly. Metal to metal contact at the interference points also provides a reliable electrical contact between the base (80) and the cartridge (10) to prevent accumulation of static charges in the cartridge.
Abstract:
A lift pump having a longitudinal axis and comprising first and second housing components defining an operational volume, a brushless direct current motor assembly, and a pump assembly disposed in said volume. The brushless direct current motor assembly has a motor axis eccentric with the longitudinal axis, a rotor, and a stator disposed diametrically inwardly of the rotor. The rotor further comprises a plurality of magnetic poles of alternating opposite polarity. The pump assembly has a pump annulus and a pump element. The pump annulus is disposed intermediate said first and second housing components and coaxial with the longitudinal axis. The pump element is coaxial with said motor axis, and comprises a generally cylindrical hub defining a motor assembly cavity sized to diametrically receive said motor assembly.
Abstract:
A filter cartridge has a longitudinal axis. A cartridge housing has first and second shell portions. The first shell portion has a cartridge housing opening and an annular element retention lip which is disposed axially inward of the opening and coaxial with the longitudinal axis. The filter element has a first end cap, a second end cap, and a continuous ring of filter media disposed between the first and second end caps. The first end cap defines a fuel flow port which is coaxial with the longitudinal axis. A plurality of resilient element retention arms extend axially from the first end cap, and surround the fuel flow port. The arms terminate in retention barbs which are mateable with the annular lip. The resilient retention arms hold the retention barbs against the annular lip, suspending the filter element within the cartridge.
Abstract:
A high pressure piston fuel pump having a discharge check valve between the pumping chamber and a pressurized fuel reservoir and a pressure relief valve between the fuel reservoir and a passageway in the housing, wherein the discharge check valve and the pressure relief valve are contained within a single fitting assembly affixed at the pump housing. A first end flow passage is in fluid communication with the pumping chamber and provides an inlet to the discharge check valve and an outlet from the pressure relief valve. A second end flow passage is in fluid communication with the fuel reservoir and provides an outlet for the discharge check valve and an inlet for the pressure relief valve. Advantages include the ability to pre-test the outlet check and pressure relief prior to assembly into the pump housing, and improved flexibility of the outlet fitting location.
Abstract:
An atomizing injector comprises a body having a central bore with a valve situated in the bore, leading to a chamber. An actuator moves the valve between closed condition and open conditions, selectively exposing the chamber to a flow of pressurized liquid. A discharge port extends from the chamber to a discharge orifice. A swirl element is situated in the chamber, while leaving a free space in the chamber immediately above the discharge port. When the valve is opened, liquid flows into the chamber, through the swirl element into the space, forming a whirl in the space before passing through the discharge port and exiting the discharge orifice as an atomized whirling spray.