Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. The elongated member has a compressible ventral surface and a substantially rigid dorsal periphery, wherein the elongated member includes a fluid bladder positioned along the ventral surface. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. Alternate embodiments are also disclosed.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. The elongated member has a compressible ventral surface and a substantially rigid dorsal periphery, wherein the elongated member includes a fluid bladder positioned along the ventral surface. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. Alternate embodiments are also disclosed.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element is disposed for movement within the elongated member. A drive element is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. A tension release mechanism is associated with the tension element.
Abstract:
A surgically implantable injection port has one or more tissue in-growth promoting surfaces. The injection port includes a housing, a fluid reservoir defined in part by the housing, a needle penetrable septum, and a tissue in-growth promoting surface integrally provided on an exterior surface of the port. The tissue in-growth promoting surface may be provided by surgical mesh or a textured surface on the injection port. The injection port may be used as part of a gastric band system or some other type of system.
Abstract:
A surgically implantable injection port has a tissue in-growth promoting surface associated with a fluid conduit that is coupled to the injection port. The injection port includes a housing, a fluid reservoir defined in part by the housing, a needle penetrable septum, a fluid conduit in communication with the reservoir, and a tissue in-growth promoting surface coupled to the fluid conduit. The tissue in-growth promoting surface may be provided by surgical mesh wrapped around the conduit or through which the conduit is threaded. The injection port and the fluid conduit may be used as part of a gastric band system or some other type of system.
Abstract:
An apparatus for regulating the functioning of a patient's organ or duct includes an elongated member (22) having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element (32) is disposed for movement within the elongated member. A drive element (576,578) is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. A tension release mechanism (574) is associated with the tension element.
Abstract:
An apparatus (22) for regulating the functioning of a patient's organ or duct includes an elongated member (36) having a first end and a second end. A fastener is disposed on the first end of the elongated member. The fastener is configured to engage the second end of the elongated member so that the elongated member forms a loop around the organ or duct. A tension element (32) is disposed for movement within the elongated member. A drive element (35) is associated with and engages the tension element for causing the tension element to control the tension applied by the elongated member against a patient's body organ or duct. A load monitor ensures that excessive pressure is not applied to a patient's body organ or duct.