METHODS OF FABRICATING COMPLEX TWO-DIMENSIONAL CONDUCTIVE SILICIDES
    2.
    发明申请
    METHODS OF FABRICATING COMPLEX TWO-DIMENSIONAL CONDUCTIVE SILICIDES 审中-公开
    制备复合二维导电硅胶的方法

    公开(公告)号:WO2010025124A1

    公开(公告)日:2010-03-04

    申请号:PCT/US2009054864

    申请日:2009-08-25

    Inventor: WANG DUNWEI ZHOU SA

    Abstract: In an embodiment, a conductive suicide nanostructure (200) includes a plurality of two-dimensional nanonet sheets (201), wherein each of the nanonet sheets (201) include connected and spaced-apart nanobeams (202) linked together at an about 90-degree angle. In an embodiment, the plurality of nanonet sheets (201) are stacked approximately horizontally. In an embodiment, the plurality of nanonet sheets (201) have an electrical resistivity of approximately 10 µO-cm. In an embodiment, a method of fabricating a two-dimensional conductive suicide includes performing chemical vapor deposition, wherein one or more gas or liquid precursor materials carried by a carrier gas stream react to form a nanostructure (200) having a mesh-like appearance and including a plurality of connected and spaced-apart nanobeams (202) linked together at an about 90-degree angle.

    Abstract translation: 在一个实施方案中,导电硅化物纳米结构(200)包括多个二维纳米片(201),其中每个纳米片(201)包括连接和间隔开的纳米片(202),其在约90- 度角。 在一个实施例中,多个纳米片(201)大致水平地堆叠。 在一个实施例中,多个纳米片(201)具有大约10μΩcm的电阻率。 在一个实施方案中,制造二维导电硅化物的方法包括进行化学气相沉积,其中由载气流携带的一种或多种气体或液体前体材料反应以形成具有网状外观的纳米结构(200)和 包括以约90度角度连接在一起的多个连接和间隔开的纳米片(202)。

    APPARATUS AND METHODS FOR SOLAR ENERGY CONVERSION USING NANOCOAX STRUCTURES
    3.
    发明申请
    APPARATUS AND METHODS FOR SOLAR ENERGY CONVERSION USING NANOCOAX STRUCTURES 审中-公开
    使用NANOCOAX结构的太阳能转换的装置和方法

    公开(公告)号:WO2007086903A3

    公开(公告)日:2009-04-09

    申请号:PCT/US2006013331

    申请日:2006-04-10

    Abstract: An apparatus and method for solar conversion using nanocoax structures are disclosed herein. A nano-optics apparatus (100) for use as a solar cell comprises a plurality of nano-coaxial structures comprising an internal conductor (120) surrounded by a semiconducting material (180) coated with an outer conductor (160); a film (140) having the plurality of nano-coaxial structures; and a protruding portion (110) of the an internal conductor (120) extending beyond a surface of the film (140). A method of fabricating a solar cell comprises coating a substrate (190) with a catalytic material; growing a plurality of carbon nanotubes (120) as internal cores of nanocoax units on the substrate (190); oxidizing the substrate (190); coating with a semiconducting film (180); and filling with a metallic medium(160) that wets the semiconducting film (180) of the nanocoax units.

    Abstract translation: 本文公开了一种使用纳摩结构的太阳能转换装置和方法。 用作太阳能电池的纳米光学装置(100)包括多个纳米同轴结构,包括由涂覆有外部导体(160)的半导体材料(180)围绕的内部导体(120); 具有多个纳米同轴结构的膜(140); 以及延伸超过膜(140)的表面的内部导体(120)的突出部分(110)。 制造太阳能电池的方法包括用催化材料涂覆基板(190); 在衬底(190)上生长作为纳米单元的内核的多个碳纳米管(120); 氧化衬底(190); 用半导体膜(180)涂覆; 以及填充润湿纳米单元的半导体膜(180)的金属介质(160)。

    APPARATUS AND METHODS FOR SOLAR ENERGY CONVERSION USING NANOSCALE COMETAL STRUCTURES
    4.
    发明申请
    APPARATUS AND METHODS FOR SOLAR ENERGY CONVERSION USING NANOSCALE COMETAL STRUCTURES 审中-公开
    用纳米级圆形结构进行太阳能转换的装置和方法

    公开(公告)号:WO2007120175A9

    公开(公告)日:2008-12-31

    申请号:PCT/US2006032452

    申请日:2006-08-24

    Abstract: An apparatus and methods for solar conversion using nanoscale cometal structures are disclosed herein. The cometal structures may be coaxial and coplanar. A nanoscale optics apparatus (100) for use as a solar cell comprises a plurality of nanoscale cometal structures each including a photovoltaic material (180) located between a first electrical conductor (120) and a second electrical conductor (160). A method of fabricating solar cells comprises preparing a plurality of nanoscale planar structures; coating a plurality of planar surfaces of the plurality of planar structures with a photovoltaic semiconductor (180) while leaving space between the plurality of planar surfaces; and coating the photovoltaic semiconductor (180) with an outer electrical conductor layer, wherein a portion of the outer electrical conductor layer is located between the planar structures to form coplanar structures.

    Abstract translation: 本文公开了一种使用纳米级彗星结构进行太阳能转换的设备和方法。 彗星结构可以是共轴的和共面的。 用作太阳能电池的纳米级光学装置(100)包括多个纳米级彗星结构,每个纳米级彗星结构包括位于第一电导体(120)和第二电导体(160)之间的光伏材料(180)。 制造太阳能电池的方法包括制备多个纳米级平面结构; 用光伏半导体(180)涂覆所述多个平面结构的多个平面表面,同时在所述多个平面表面之间留出空间; 以及用外部电导体层涂覆光伏半导体(180),其中外部电导体层的一部分位于平面结构之间以形成共面结构。

    METHOD OF FABRICATING NANOWIRES AND ELECTRODES HAVING NANOGAPS
    5.
    发明申请
    METHOD OF FABRICATING NANOWIRES AND ELECTRODES HAVING NANOGAPS 审中-公开
    制备纳米微粒的纳米微粒和电极的方法

    公开(公告)号:WO2007040558A3

    公开(公告)日:2007-12-27

    申请号:PCT/US2005041474

    申请日:2005-11-15

    Abstract: A cost-effective and highly reproducible method of fabricating nanowires, and small gaps or spacings in nanowires is disclosed. The nanogaps bridge an important size regime between 1 nm and 100 ran. The nanogaps can be selectively predetermined to be as small as 1.0 nm, or larger than 1000 nm. These electrode gaps can be useful in preparing molecular electronic devices that involve making electrical contact to individual molecules, such as biomolecules, or small clusters of molecules. Microelectrodes having nanogaps for electrical and magnetic applications formed by the method, and as well as biosensors and their use in detecting a biological species, such as DNA, are also disclosed.

    Abstract translation: 公开了一种制造纳米线的成本有效且高度可再现的方法,以及纳米线中的小间隙或间隔。 纳米角桥接在1nm至100nm之间的重要尺寸体系。 纳米角可以选择性地预定为小至1.0nm,或大于1000nm。 这些电极间隙可用于制备分子电子器件,其涉及与单个分子(例如生物分子)或小分子簇的电接触。 还公开了通过该方法形成的具有用于电和磁应用的纳米角的微电极以及生物传感器及其在检测生物物种如DNA中的用途。

    SINGLE CRYSTAL METAL NANOCRYSTALS
    7.
    发明申请
    SINGLE CRYSTAL METAL NANOCRYSTALS 审中-公开
    单晶金属纳米晶体

    公开(公告)号:WO2006137895A3

    公开(公告)日:2007-11-15

    申请号:PCT/US2005035320

    申请日:2005-09-30

    CPC classification number: C30B7/14 B82Y30/00 C30B29/60

    Abstract: Methods for producing nanocrystals comprising metallic materials utilizing an inverse micelle solvothermal process are disclosed. Nanocrystals comprising well-ordered, single-crystalline germanium (Ge) materials with predeterminable morphologies in relatively high purity are produced by suspending a Ge salt material comprising a metal ion in a non-aqueous inverse micelle solvent comprising at least one surfactant, and introducing a reducing agent to the non-aqueous inverse micelle solvent to reduce a plurality of metal ions to form a ordered single-crystalline Ge nanocrystal.

    Abstract translation: 公开了使用反胶束溶剂热法制备包含金属材料的纳米晶体的方法。 通过将包含金属离子的Ge盐材料悬浮在包含至少一种表面活性剂的非水性反胶束溶剂中来制备包含具有相对高纯度的可预测形态的有序的单晶锗(Ge)材料的纳米晶体,并引入 还原剂到非水反相胶束溶剂中以还原多个金属离子以形成有序的单晶Ge纳米晶体。

    NANOCOMPOSITES WITH HIGH THERMOELECTRIC FIGURES OF MERIT
    8.
    发明申请
    NANOCOMPOSITES WITH HIGH THERMOELECTRIC FIGURES OF MERIT 审中-公开
    具有高温热电偶图的纳米复合材料

    公开(公告)号:WO2006137923A8

    公开(公告)日:2007-07-05

    申请号:PCT/US2005039362

    申请日:2005-10-31

    Abstract: The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nanosized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k B T, wherein k B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

    Abstract translation: 本发明一般涉及显示增强的热电性能的纳米复合热电材料。 纳米复合材料包括两种或更多种组分,其中至少一种组分在复合材料内形成纳米尺寸结构。 选择组分使得复合材料的导热性降低而基本上不会降低复合材料的导电性。 合适的组分材料表现出类似的电子带结构。 例如,一个组分材料的导带或价带中的至少一个与组分之间的界面处的另一组分材料的相应带之间的带边间隙可以小于约5k B B, SUB> T,其中k B是Boltzman常数,T是所述纳米复合材料组合物的平均温度。

    HIGH-FLUX ENTANGLED PHOTON GENERATION VIA PARAMETRIC PROCESSES IN A LASER CAVITY
    10.
    发明申请
    HIGH-FLUX ENTANGLED PHOTON GENERATION VIA PARAMETRIC PROCESSES IN A LASER CAVITY 审中-公开
    通过激光腔中的参数化过程产生高通量光电子

    公开(公告)号:WO0245468A2

    公开(公告)日:2002-06-06

    申请号:PCT/US0144889

    申请日:2001-11-30

    Abstract: The present invention relates to a novel and useful way of generating a strong source of doubly or multiply entangled photons. To generate a high flux of such photons we propose the use of a parametric process, or a set of simultaneous parametric processes, in conjunction with laser-type action and nonlinear optical processes in an optical cavity. This can be achieved via an optical-system configuration in which two, three or more processes take place simultaneously: the generation of light by stimulated emission or other means from an active medium in a cavity; the nonlinear-optical production of higher optical harmonics in the same or in a n auxiliary cavity; and the generation of spontaneous parametric downconversion in the same or in an auxiliary cavity. Laser action can be achieved via the usual stimulated-emission mechanisms associated with a pumped active medium in a cavity or, more generally, via schemes that produce laser light without population inversion by virtue of quantum-interference effects or other optical processes. The generation of high-flux entangled-photon beams can take the form of continuous wave (cw) or pulsed light, the latter can be achieved by means of any number of mechanisms including gain switching, cavity dumping, Q-switching, mode-locking, or any combination thereof. Parametrically downconverted radiation generated in the manner described above is expected to have novel, unusual, and useful statistical, entanglement, and hyperentanglement properties. It is expected to find use in a large number of applications, including new forms of optical measurements; new forms of optical spectroscopy; new forms of quantum imaging including entangled-photon microscopy, spectroscopy, and display; quantum information; as well as offering new ways of examining quantum paradoxes.

    Abstract translation: 本发明涉及一种产生双重或多重缠结光子的强源的新颖且有用的方法。 为了产生高通量的这种光子,我们提出使用参数化过程或一组同时的参数化过程,结合光学腔中的激光类型动作和非线性光学过程。 这可以通过其中两个,三个或更多个处理同时进行的光学系统配置来实现:通过受激发射或其它装置从空腔中的活性介质产生光; 在相同或在n个辅助腔中的非线性光学产生较高的光学谐波; 以及在相同或辅助腔中产生自发参数下变换。 可以通过与空腔中的泵浦有源介质相关联的通常的受激发射机制来实现激光作用,或者更一般地,通过由于量子干涉效应或其它光学过程产生激光而没有群体反转的方案。 高通量纠缠光子束的产生可以采取连续波(cw)或脉冲光的形式,后者可以通过任何数量的机制来实现,包括增益切换,腔体倾倒,Q开关,锁模 ,或其任何组合。 预期以上述方式产生的参数下变频辐射具有新颖的,不寻常的和有用的统计,纠缠和过度缠结特性。 预计可以在许多应用中使用,包括新形式的光学测量; 新形式的光谱; 量子成像的新形式包括纠缠光子显微镜,光谱和显示; 量子信息; 并提供了新的检验量子悖论的方法。

Patent Agency Ranking