Abstract:
The invention relates to a method of MR imaging of at least a portion of a body (110) of a patient placed in an examination volume of a MR device, the method comprising the steps of: - subjecting the portion of the body (110) to an imaging sequence comprising at least one RF pulse, the RF pulse being transmitted toward the portion of the body (110) via a RF coil arrangement (109) to which RF signals are supplied by two or more RF power amplifiers the RF power amplifiers being activated alternately during the imaging sequence in a time -multiplexed fashion, wherein the imaging sequence requires a RF duty cycle and/or a RF pulse duration exceeding the specification of at least one of the RF power amplifiers; - acquiring MR signals from the portion of the body (110); and - reconstructing a MR image from the acquired MR signals. Moreover, the invention relates to a method of MR spectroscopy involving the alternating use of RF power amplifiers in a time -multiplexed fashion.
Abstract:
An apparatus comprising -an imaging component for acquiring magnetic resonance images; -a storage component for storing the magnetic resonance images in a stack; -a sorting component for sorting the magnetic resonance images in the stack using machine defined meta information of the images; and -an interface for reading the ordered stack.
Abstract:
A magnetic resonance imaging system comprises an RF-excitation module to generate one of several RF-excitations and a gradient module to generate one of several magnetic gradient pulses, a control unit controls the RF-excitation module and the gradient module and performs an acquisition sequence containing a succession of RF-excitations and gradient pulses. The acquisition sequence comprising several acquisition segments in which magnetic resonance signals are generated, in respective segments different contrast types occur. Individual acquisition segments have one or several repetitive acquisition units, magnetic resonance signals in an individual acquisition unit pertaining to the same contrast type. This approach of acquisition of different contrast type per group of acquisition segments allows optimisation of the acquisition of each of the contrast type independently of the contrast type of other groups of acquisition segments.
Abstract:
A magnetic resonance imaging system comprises an RF-excitation module to generate one of several RF-excitations and a gradient module to generate one of several magnetic gradient pulses, a control unit controls the RF-excitation module and the gradient module and performs an acquisition sequence containing a succession of RF-excitations and gradient pulses. The acquisition sequence comprising several acquisition segments in which magnetic resonance signals are generated, in respective segments different contrast types occur. Individual acquisition segments have one or several repetitive acquisition units, magnetic resonance signals in an individual acquisition unit pertaining to the same contrast type. This approach of acquisition of different contrast type per group of acquisition segments allows optimisation of the acquisition of each of the contrast type independently of the contrast type of other groups of acquisition segments.
Abstract:
A therapeutic apparatus (100) comprising: a radio therapy apparatus (102) for treating a target zone (146) of a subject (144), wherein the radio therapy apparatus comprises a radio therapy source (110) for generating electromagnetic radiation (114), wherein the radio therapy apparatus is adapted for rotating the radio therapy source about a rotational point (116); a mechanical actuator (104) for supporting the radio therapy apparatus and for moving the position and/or orientation of the rotational point; and a magnetic resonance imaging system (106) for acquiring magnetic resonance data (170) from an imaging zone (138), wherein the target zone is within the imaging zone, wherein the magnetic resonance imaging system comprises a magnet (122) for generating a magnetic field within the imaging zone, wherein the radio therapy source is adapted for rotating at least partially about the magnet.
Abstract:
The invention relates to a method of characterizing the RF transmit chain of a magnetic resonance imaging scanner (1) using -a local transmit/receive coil system (204; 210), comprising a first local NMR probe and a first local magnetic resonance coil, the first NMR probe being spatially located in immediate neighborhood to the first coil, -a local receive coil system (206; 208), comprising a second local NMR probe and a second local magnetic resonance coil, the second NMR probe being spatially located in immediate neighborhood to the second coil, wherein the transmit chain comprises an external MR coil (9; 11; 12; 13), the method comprising: -determining with the first magnetic resonance coil, a first MR signal phase evolution of the local RF transmit field generated by MR excitation of the first probe using the first magnetic resonance coil by measuring the RF response of the first probe upon said excitation, -determining with the second magnetic resonance coil a second MR signal phase evolution of the local RF transmit field generated by MR excitation of the second probe using the external MR coil (9; 11; 12; 13) by measuring the RF response of the second probe upon said excitation, - calculating a phase offset between the first and second MR signal phase evolution.
Abstract:
An magnetic resonance examination system for examination of an object comprises an RF system to generate an RF transmission field and gradient system to generate temporarymagnetic gradient fields. A controlmodule includes a sequence controller to controlthe RF system and the gradient system to produce acquisition sequences including RF pulses and magnetic gradient pulses to generate magnetic resonance signals. The sequence controller is configured to produce an detection scan including a steady state gradient echo acquisition sequence to generate steady state gradient echo signals and an RF spoiled echo acquisition sequence to produce RF spoiled echo signals. The control module further including an analysis unit to compare the gradient echo signals to the RF spoiled echo signals and for detection of an instrument in the object from the comparison of the gradient echoes and the RF spoiled echoes.
Abstract:
A dispenser is provided for producing a nuclear hyperpolarised contrast agent. The dispenser comprises a chamber to receive a compound. A photonic hyperpolarisation system generates an OAM -photonic beam endowed with orbital angular momentum and is arranged to direct the OAM -photonic beam into the chamber so as to generate nuclear hyperpolarisation in the compound. The chamber has an output over which the hyperpolarised compound can be issued. Since the hyperpolarisation is generated ex-vivo, the penetration depth of the OAM-photonic beam in biological tissue is irrelevant for the present invention.