Abstract:
Systems include one or more medicinal storage containers. For example, an integrally thermally sealed medicinal storage container may include one or more segments of at least one ultra efficient insulation material, the one or more segments having one or more surface regions, the one or more segments principally defining at least one storage region, one or more regions of substantially thermally sealed connections between at least one of the one or more surface regions of the one or more segments wherein the one or more regions of substantially thermally sealed connections and the one or more segments form at least one integrally thermally sealed medicinal storage region, one or more thermal variant units, and at least one selectively-operable thermal conduction unit.
Abstract:
Systems include one or more medicinal storage containers. For example, an integrally thermally sealed medicinal storage container may include one or more segments of at least one ultra efficient insulation material, the one or more segments having one or more surface regions, the one or more segments principally defining at least one storage region, one or more regions of substantially thermally sealed connections between at least one of the one or more surface regions of the one or more segments wherein the one or more regions of substantially thermally sealed connections and the one or more segments form at least one integrally thermally sealed medicinal storage region, one or more thermal variant units, and at least one selectively-operable thermal conduction unit.
Abstract:
A thermal treatment system for thermally treating objects includes a housing including a top surface, a basin recessed into the top surface and configured to contain a liquid medium, where the liquid medium thermally treats objects placed within the liquid medium, and a ramp structure disposed on the top surface of the housing. The ramp structure is configured to support at least one object such that a first end portion of the object is disposed within the liquid medium while a second end portion of the object is supported by the ramp structure outside of the liquid medium.
Abstract:
Disclosed is an exemplary surgical system employing a temperature controlled docking station. The surgical system may include an articulating arm that is selectively moveable within a range of positions. A tray for receiving items used in performing a procedure may be attached to the articulating arm. The docking station may be attached to the tray. The docking station may include a heating element for selectively heating the docking station, a temperature sensor for monitoring a temperature of the docking station, and a reader configured for collecting information associated with an article placed in the docking station. The surgical system may also include a controller operably connected to the heating element, the temperature sensor, and the reader. The controller may be configured to adjust a heat output of the heating element in response to a signal received from the temperature sensor and/or the reader.
Abstract:
A liquid warming device for heating sterile fluids in a removable basin is described with emphasis on the properties of the basin interaction with the liquid warming device and with a drape that works with the basin to maintain a sterile field above the drape and the top of the basin. The interactions between a temperature sensor and a temperature well integrated in the removable basin are disclosed. Useful attributes for control system for liquid warming devices are disclosed.
Abstract:
In this method for cementing an implant into bone by means of an autopolymerising two-component bone cement the implant, in particular the stem of a hip prosthesis is preheated above room temperature prior to its cementing into bone, preferably to at least 43 DEG C. By this method the stem-cement interface is warmer than the bone-cement interface and consequently a stiff cement shell will form first around the stem and the cement will shrink towards the stem and away from the bone. The resulting reduction of porosity at the stem-cement interface improves significantly the fatigue life of the system.
Abstract:
A trolley (10) comprising a work surface (12) on which surgical instruments may be placed during surgical procedures. A heating device (26) is provided for selectively heating the surface (12). This allows for the heating of the surgical instruments prior to their use. The surgical instruments may be, for example, surgical telescopes. Other articles may also be placed on the working surface for heating, including for example containers of treatment fluids.
Abstract:
The invention relates to a process for the in vitro diagnosis of allergic, in particular also pseudo-allergic, immunological and environment-related disorders using live biopsy tissue samples. Also disclosed is a mobile incubation device for keeping the tissue samples alive and functioning. The samples can be, for example, skin or mucous membrane particles. The biopsy sample (14) once removed from the patient is placed in a temperature-controlled oxygen-containing incubating medium (16) and an allergen is introduced, triggering an immediate reaction (a so-called type 1 allergy). The secretion of immunoglobulin E (IgE) or a mediator is then determined qualitatively and/or quantitatively. Suitable mediators are histamine, tryptase, ECP, MPO, DAO, TPS, interleukins, prostaglandins or cytokines. The proposed mobile incubation device is provided with a temperature-controllable incubator for sample holders inside a housing. The sample containers can be filled with a nutrient solution. An oxygen-containing fluid is bubbled through feed ducts into the nutrient solution.
Abstract:
A device (30) for automatically counting, weighing, and calculating an amount of blood contained within, soiled surgical sponges (2); this device includes a cabinet with an opening (3) at the top through which the sponges (2) are deposited, a reader (6) which scans each sponge (2) entered and determines the sponge type from a tag (1) affixed to each sponge (2), and a disposable bag (8) into which the sponges are deposited. The disposable bag (8) is removeably mounted to a weighing scale (10); there is also a rear door (9) from which the disposable bag (8) can be easily removed, a rechargeable battery (11), a shelf (12) for unused disposable bag storage, a control unit (4) which processes data received from reader (6) and scale (10) and instantaneously calculates total weight of liquid contained within sponges entered, a display panel (5) continuously displays the number and type of sponges entered during a given procedure as well as the total weight of liquids retained in those sponges. The device can automatically determine the dry weight of the sponges by reading the tag (1) on the sponges (2) with a non-optical scanner (6) even when the tag (1) is covered with blood or other body fluids.