Abstract:
A transparent reinforced composite material. An illustrative embodiment of the reinforced composite material includes a polymeric matrix, at least one low-density region including a first plurality of glass elements having a first packing density provided in the polymeric matrix and at least one high-density region including a second plurality of glass elements having a second packing density greater than the first packing density provided in the polymeric matrix. A method for reinforcing a composite material is also disclosed.
Abstract:
A reinforcing fiber for reinforcing a transparent matrix composite. The fiber includes a substantially transparent fiber ribbon having an elongated cross-sectional geometry. The fiber ribbon includes edges that are substantially opaque. Light is substantially prevented from passing through the opaque edges to reduce or eliminate light distortion through the fiber. A composite utilizing the reinforcing fibers and a method for making a window assembly and a method for manufacturing a vehicle are also disclosed.
Abstract:
A glass fiber and a method of manufacturing a glass fiber for reinforcing a transparent composite matrix are disclosed. The glass fiber includes a first glass material having a first set of mechanical properties including a first modulus and a first coefficient of thermal expansion (CTE) and a second glass material having a second set of mechanical properties including a second modulus and a second CTE. The second glass material forms a substantially uniform coating on the first glass material. The second CTE is less than the first CTE. The glass fiber is formed by reducing the cross-section of a glass fiber preform of the first glass material coated with the second glass material by hot working. Because of the selected difference in the CTE's, the first glass material imparts a compressive force upon the second glass material, which improves the strength of the glass fiber.
Abstract:
A composite article may include a plurality of fibers (30) embedded within a matrix. The fibers may include a first fiber and a second fiber which may be oriented in substantially parallel relation to one another. The first and second fibers may be connected to one another at one or more connection sites (80).
Abstract:
A composite article has an article surface and may comprise a plurality of fibers (20) at least partially embedded in a matrix (18). Each fiber may have at least one base surface (22) and a pair of side surfaces (28). The side surfaces may be oriented in non-perpendicular relation to the base surface. The fibers may be positioned in side-by- side relation to one another such that the side surfaces of each fiber are oriented substantially parallel to the side surfaces of the immediately adjacent fibers.
Abstract:
A composite article includes a plurality of fibers at least partially embedded within a matrix. The fibers may be adhered to the matrix at a level of adhesion. The adhesion level between the fibers and the matrix may be varied spatially within the composite article. For example, the adhesion level may vary along a length of one of the fibers. The adhesion level may also vary among the fibers of a given layer. Furthermore, the adhesion level may vary between the layers of the composite article.
Abstract:
A composite article comprising a plurality of fibers (22) having upper, 0 lower and side surfaces, the fibers being embedded within a matrix. At least one of the upper and lower surfaces of at least one of the fibers includes a notch region (40) and a pair of side regions (42) on opposite sides of the notch region. The plurality of fibers are arranged in layers. At least one of the fibers of one of the layers is received within the notch region of at least one of the fibers of another one of the layers.
Abstract:
A reinforcing fiber for reinforcing a transparent matrix composite. The fiber includes a substantially transparent fiber ribbon having an elongated cross-sectional geometry. The fiber ribbon includes edges that are substantially opaque. Light is substantially prevented from passing through the opaque edges to reduce or eliminate light distortion through the fiber. A composite utilizing the reinforcing fibers and a method for making a window assembly and a method for manufacturing a vehicle are also disclosed.
Abstract:
A selectively reinforced hybrid metal-composite structural element can include a metal element and a composite material. The composite material can be bonded to the metal element by an adhesive layer including a polymer matrix using a radiation curing process, resulting in insubstantial or negligible residual stresses at the bond line between the metal element and the composite element. The structural element also can include a metal closeout cap to provide a barrier from a corrosive atmosphere, and the adhesive layer can encapsulate the composite element to provide a corrosion-resistant barrier between the composite element and the surrounding metal.