摘要:
A method and kit for assaying a cell sample for the presence of at least a threshold number of cells of a given type are disclosed. The kit includes an assay device having a sample chamber for receiving the cell sample and an elongate collection chamber containing a selected-density and/or viscosity medium and having along its length, a plurality of cell-collection regions, and particles which are capable of specific attachment to cells of the selected cell type, and which are effective, when attached to the cells, to increase the density or magnetic susceptibility of the cells. In operation, particle-bound cells and particles in the cell sample are drawn through the elongate collection chamber under the influence of a gravitational or selected centrifugal or magnetic-field force until the particle-bound cells and particles completely fill successive cell- collection regions in the collection chamber. Indicia associated with at least one collection regions indicates a concentration of cells of the selected type effective to at least partially fill that collection region.
摘要:
A system and method for determining the presence and/or concentration of one or more analytes in a sample that comprises a fluid, the system comprising a solid substrate comprising a sample inlet or inlets and one or more analyte determination flow paths, each analyte determination flow path comprising a defined beginning and a defined terminus and comprising at least one capture zone containing a capture agent for an analyte, the capture agent or agents being immobilized along a portion of the flow path or paths, the flow path or paths being designed so that the one or more analytes are depleted from the sample and bound in a non-linear manner to the portion of the flow path or paths containing immobilized capture agent or agents, producing an analyte depletion end region for each analyte between the beginning and the terminus of the analyte determination flow path.
摘要:
A system, methods, and apparatus are described to collect and prepare single cells, nuclei, subcellular components, and biomolecules from specimens including tissues. The system can perform enzymatic and/or physical disruption of the tissue to dissociate it into single-cells or nuclei in suspension or subcellular components including nucleic acids. In some embodiments, the titer of dissociated cells is monitored at intervals and the viability determined. In some embodiments, the processing is adjusted according to the measurements of the titer and viability. In some embodiments, the single-cells or nuclei in suspension are washed and resuspended in the buffer or media of choice. In some embodiments, the conditions are chosen to produce nuclei. In other embodiments, the single-cells or nuclei are purified by affinity paramagnetic bead processing. In some embodiments, matched bulk nucleic acid to the single-cells is produced. In other embodiments, single-cell libraries, or nuclei libraries, or matched bulk libraries, or bulk libraries are produced. The single cells or nuclei can then be further processed by FACS, DNA sequencing, mass spectrometry, fluorescence, or other methods. In other embodiments, the tissue processing is integrated with an analytical system to produce a sample-to-answer system such as a tissue-to-genomics system.
摘要:
Methods and devices for efficient separation of plasma from whole blood which are suitable for point of care use in resource poor environments. Elements of such devices comprise (a) a sample collection receptacle (SCR) with at least one port, the sample collection receptacle capable of holding a predetermined volume of a sample of undiluted whole blood drawn through a port: (b) a filter chamber having an inlet and an outlet, and containing at least one filler capable of separating plasma from blood cells as sample passes from an inlet side to an outlet side of the at least one filter whenever the filter chamber is placed in fluid communication with a port of the sample collection receptacle; and (c) a manually driven pump operationally associated with the SCR and filter chamber.
摘要:
A method and kit for assaying a cell sample for the presence of at least a threshold number of cells of a given type are disclosed. The kit includes an assay device having a sample chamber for receiving the cell sample and an elongate collection chamber containing a selected-density and/or viscosity medium and having along its length, a plurality of cell-collection regions, and particles which are capable of specific attachment to cells of the selected cell type, and which are effective, when attached to the cells, to increase the density or magnetic susceptibility of the cells. In operation, particle-bound cells and particles in the cell sample are drawn through the elongate collection chamber under the influence of a gravitational or selected centrifugal or magnetic-field force until the particle-bound cells and particles completely fill successive cell- collection regions in the collection chamber. Indicia associated with at least one collection regions indicates a concentration of cells of the selected type effective to at least partially fill that collection region.
摘要:
Embodiments of the invention are directed to microfluidic devices. In one embodiment, a microanalysis chip comprises a body having at least one transfer-separation channel with a channel bottom that has a bottom opening. The transfer-separation channel terminates in a discharge aperture.
摘要:
A system and method for determining the presence and/or concentration of one or more analytes in a sample that comprises a fluid, the system comprising a substrate comprising a sample inlet or inlets and one or more analyte determination flow paths, each analyte determination flow path comprising a defined beginning and a defined terminus and comprising at least one capture zone containing a capture agent for an analyte, the capture agent or agents being immobilized along a portion of the flow path or paths, the flow path or paths being designed so that the one or more analytes are depleted from the sample and bound to the portion of the flow path or paths containing immobilized capture agent or agents, producing an analyte depletion end region for each analyte between the beginning and the terminus of the analyte determination flow path.
摘要:
The invention is directed to methods and devices for efficient separation of plasma irons whole blood which are suitable for point of care use in resource poor environments, in some embodiments, elements of such devices comprise (a) a sample collection receptacle (SCR) with at least one port, the sample collection receptacle capable of holding a predetermined volume of a sample of undiluted whole blood drawn through a port; (b) a filter chamber having an inlet and an outlet, and containing at least one filter capable of separating plasma from blood cells as sample passes from an inlet side to an outlet side of the at least one filter whenever the filter chamber is placed in Quid communication with a port of the sample collection receptacle; and (c) a manually driven pump operationally associated with the SCR and filter chamber for (i) drawing a predetermined volume of sample into ore SCR by a first user action and (ii) driving the predetermined volume at a substantially constant linear flow under a pressure not exceeding 2 psi from the SCR through the filter chamber and the outlet of the filter chamber by a second user action.
摘要:
The present invention provides methods and assemblies for ion detection of samples using a chip with elevated sample zones. The elevated sample zones provide a number of ion detection advantages over chips with non-elevated sample zones. Embodiments of the invention have a number of applications in drug discovery, environmental analyses for tracking and the identification of contaminants, target discovery and/or validation as well as in diagnostics in a clinical setting for staging or disease progression. In addition, the invention may also be used with research and clinical microarray systems and devices.
摘要:
The present invention provides methods and assemblies for ion detection of samples using a chip with elevated sample zones. The elevated sample zones provide a number of ion detection advantages over chips with non-elevated sample zones. Embodiments of the invention have a number of applications in drug discovery, environmental analyses for tracking and the identification of contaminants, target discovery and/or validation as well as in diagnostics in a clinical setting for staging or disease progression. In addition, the invention may also be used with research and clinical microarray systems and devices.