Abstract:
In a first aspect, the present invention relates to a method of producing a library of microorganisms, the method comprising the steps of: a. providing a first fluid comprising at least one single cell, b. dispersing said first fluid comprising at least one single cell in a second fluid, thereby obtaining a plurality of single-layer microfluidic droplets, wherein at least one single- layer microfluidic droplet comprises at least one single cell, wherein the second fluid is immiscible with the first fluid, c. optionally, adding to said at least one single-layer microfluidic droplet a third fluid comprising a sensing compound, wherein the third fluid is miscible with said first fluid, and wherein the third fluid is immiscible with said second fluid, d. injecting said at least one single-layer microfluidic droplet optionally comprising the sensing compound into a fourth fluid, wherein said fourth fluid is immiscible with said second fluid, thereby obtaining at least one double-layer microfluidic droplet, e. dispensing said at least one double-layer microfluidic droplet into a culture medium based on the viability of the cell, f. incubating said culture medium, thereby obtaining said library. In a second aspect, the present invention relates to a system comprising: a. a first microfluidic chip for producing a plurality of single-layer microfluidic droplets wherein at least one single-layer microfluidic droplet comprisesat least one single cell, b. a first microfluidic device for collecting said plurality of single-layer microfluidic droplets, c. a second device for adding a sensing compound into said at least one single-layer microfluidic droplet comprising at least one single cell, d. a second microfluidic chip for producing a double-layer microfluidic droplet, and e. a dispensing unit. In a third aspect, the present invention relates to the use of the method according to the first aspect of the present invention in a system according to the second aspect of the present invention.
Abstract:
Selectively controllable cleavable linkers include electrochemically-cleavable linkers, photolabile linkers, thermolabile linkers, chemically-labile linkers, and enzymatically-cleavable linkers. Selective cleavage of individual linkers may be controlled by changing local conditions. Local conditions may be changed by activating electrodes in proximity to the linkers, exposing the linkers to light, heating the linkers, or applying chemicals. Selective cleaving of enzymatically-cleavable linkers may be controlled by designing the sequences of different sets of the individual linkers to respond to different enzymes. Cleavable linkers may be used to attach polymers to a solid substrate. Selective cleavage of the linkers enables release of specific polymers from the solid substrate. Cleavable linkers may also be used to attach protecting groups to the ends of growing polymers. The protecting groups may be selectively removed by cleavage of the linkers to enable growth of specific polymers.
Abstract:
The present disclosure provides methods and processes for forming a pattern of oligonucleotides on a microarray. A method for forming a pattern of oligonucleotides on a microarray may include forming a photoresist layer by applying a photoresist composition onto an underlying layer of a substrate, exposing a dose of light through a patterned mask onto the substrate, and removing protective groups on a section of the plurality of functional groups within at least one exposed region of the substrate, wherein the photoresist composition comprises a photoacid generator, an acid scavenger and a photosensitizer, wherein the underlying layer comprises a plurality of functional groups protected by protective groups; thereby forming a pattern on the substrate, wherein the pattern comprises the at least one exposed region, and wherein the at least one exposed region is no more than 1 micrometer in at least one dimension.
Abstract:
The present invention provides a rotating microfluidic device capable of combining portions of various liquids into a single droplet, thus generating millions of droplets with differing compositions.
Abstract:
In alternative embodiments the invention provides libraries of compounds, or drugs or drug candidates, manufactured and selected for having a desired property such as a biological or a chemical activity, and methods for making and using them. In one embodiment, the invention provides methods for identifying desirable compounds from very large compound sets using a compound fragment as the query. In alternative embodiments, the invention provides methods of making compounds, and libraries of compounds, using a "feasible reaction" growth scheme.
Abstract:
The invention provides nonlimiting examples of structures for and methods of dispensing droplets in a droplet actuator. The droplet actuator structures and methods of the invention exhibit numerous advantages over droplet actuators of the prior art. In various embodiments, the structures and methods of the invention provide, among other things, improved efficiency, throughput, scalability, and/or droplet uniformity, as compared with existing droplet actuators. Further, in some embodiments, the droplet actuators provide configurations for improved methods of loading and/or unloading fluid and/or droplets. In yet other embodiments, the droplet actuators provide fluid loading configurations for loading numerous fluid reservoirs in a substantially simultaneous and/or substantially sequential manner.
Abstract:
The invention pertains generally to the field of biology and particularly to techniques and apparatus for the synthesis and analysis of biopolymers using micro-arrays. The present invention provides improved apparatus and methods in defining the active array locations for each nucleotide-adding operation, enhancing accuracy, flexibility, speed and performance. The apparatus comprises a process chamber, a light source (e.g. laser), a scanning device and at least one sensor unit for detecting the light received. The sensor unit functions as a reference position and may be used for calibrating the light beam. The information for the sensor units is used to compensate.for offset drift, gain drift or loss of laser power. In addition, the present invention relates to the synthesis of biopolymers, e.g. DNA- sequences, peptides, carbohydrates and lipids, carried out using. a patterning process on an activated or chemically inert surface of asubstrate. Non-grid patters are claimed as a non-trivial extension of laser based pattern generation in arrays. Substrates comprising at least one channel and at least one biopolymer at a spatially selected region, which extends over the sides of the channel, are also claimed.
Abstract:
The present invention provides methods, devices and kits for detecting a ligand. The methods involve capturing a ligand from a sample with an affinity substrate that includes a receptor for a ligand, transferring captured ligand to a detection surface and detecting the ligand on the detection surface with a liquid crystal. Accordingly, the capture step is decoupled from the detection step.
Abstract:
This invention relates generally to the field of nucleic acid detection. In particular, the invention provides a lab-on-chip system for analyzing a nucleic acid, which system comprises, inter alia, controllably closed space, and a target nucleic acid can be prepared and/or amplified, and hybridized to a nucleic acid probe, and the hybridization signal can be acquired if desirable, in the controllably closed space without any material exchange between the controllably closed space and the outside environment. Methods for analyzing a nucleic acid using the lab-on-chip system is also provided.