Abstract:
A processing apparatus for use in a corrosive operating environment is provided. The apparatus includes a base substrate for placing a wafer thereon. The base substrate has a coefficient of thermal expansion. At least one electrode is embedded in or disposed on or under the base substrate. The electrode has a coefficient of thermal expansion in a range of from about 0.70 to about 1.25 times that of the base substrate coefficient of thermal expansion (CTE). At least one coating layer is disposed on the base substrate. The coating layer includes a composition capable of forming a calcium aluminate coating. The calcium aluminate coatingJay.er is doped with one of MgO, CaO, CaF 2 and mixtures thereof to control the CTE of the coating layer to match the CTE of the base substrate. The apparatus is exposed to a corrosive operating environment at a temperature range of from about 25 degrees Celsius to about 1500 degrees Celsius. A coated article and associated method are provided.
Abstract:
The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue-and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or “interlayer” enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.
Abstract:
The invention provides coatings to achieve the best accommodation of chemical, physical, and mechanical properties desired in high performance and reliable glass molding and forming tools. The substrate material can be any ordinary die or tool material such as cast iron, stainless steel, platinum, tungsten carbide and silicon. A simple coating architecture consisting of a titanium adhesion layer and a Ni-AI-N or Ti-B-C-N working layer is provided. A NiAl working layer can meet the requirements of wear resistance in which abrasive and/or erosive wear is relatively low, while a Ti-B-C-N working layer is sufficient for processes operating at relatively low temperature or in vacuum or a protective environment. The coating architectures, from the coating/substrate interface to the outer most surface of the coating include an inner adhesion layer, an outer working layer and, optionally, one or more functionally graded material layers. The invention also provides methods of making these coatings.
Abstract:
A processing apparatus for use in a corrosive operating environment is provided. The apparatus includes a base substrate for placing a wafer thereon. The base substrate has a coefficient of thermal expansion. At least one electrode is embedded in or disposed on or under the base substrate. The electrode has a coefficient of thermal expansion in a range of from about 0.70 to about 1.25 times that of the base substrate coefficient of thermal expansion (CTE). At least one coating layer is disposed on the base substrate. The coating layer includes a composition capable of forming a calcium aluminate coating. The calcium aluminate coatingJay.er is doped with one of MgO, CaO, CaF 2 and mixtures thereof to control the CTE of the coating layer to match the CTE of the base substrate. The apparatus is exposed to a corrosive operating environment at a temperature range of from about 25 degrees Celsius to about 1500 degrees Celsius. A coated article and associated method are provided.
Abstract:
The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue-and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.
Abstract:
The invention provides coatings to achieve the best accommodation of chemical, physical, and mechanical properties desired in high performance and reliable glass molding and forming tools. The substrate material can be any ordinary die or tool material such as cast iron, stainless steel, platinum, tungsten carbide and silicon. A simple coating architecture consisting of a titanium adhesion layer and a Ni-AI-N or Ti-B-C-N working layer is provided. A NiAl working layer can meet the requirements of wear resistance in which abrasive and/or erosive wear is relatively low, while a Ti-B-C-N working layer is sufficient for processes operating at relatively low temperature or in vacuum or a protective environment. The coating architectures, from the coating/substrate interface to the outer most surface of the coating include an inner adhesion layer, an outer working layer and, optionally, one or more functionally graded material layers. The invention also provides methods of making these coatings.
Abstract:
A fluid conduit (10) is provided having (a) a fluid conduit exterior surface (14); (b) a fluid conduit interior surface (16); (c) an electroless nickel protective coating (18) disposed upon one or both of the fluid conduit interior surface and the fluid conduit exterior surface; and (d) a layer (20) of Ni 3 S 2 disposed upon and substantially covering the electroless nickel protective coating. The fluid conduit can be any fluid conduit through which a fluid may be caused to pass, such as a downhole tubular used in oil and gas production, or a gas liquid cyclonic separator. And a hydrocarbon production tube, a method of producing a fluid conduit comprising a nickel sulfide protective layer, a machine component comprising at least one surface having a protective outer layer are provided. The combination of the electroless nickel inner protective coating with an outer layer of Ni 3 S 2 affords articles such as fluid conduits and machine components with exceptional scale and corrosion resistance.
Abstract:
A wafer processing apparatus, including a heater apparatus, is provided. The heater apparatus includes a coating layer; and a seal structure in contact with the coating layer. The seal structure is formed from a seal formable material. The seal formable material includes at least one of a YASB glassy composition, a CGYP glassy composition, or a combination of the YASB glassy composition and the CGYP glassy composition. A method and device are also included.