Abstract:
A processing chamber may include a gas distribution member, a metal ring member below the gas distribution member, and an isolating assembly coupled with the metal ring member and isolating the metal ring member from the gas distribution member. The isolating assembly may include an outer isolating member coupled with the metal ring member. The outer isolating member may at least in part define a chamber wall. The isolating assembly may further include an inner isolating member coupled with the outer isolating member. The inner isolating member may be disposed radially inward from the metal ring member about an central axis of the processing chamber. The inner isolating member may define a plurality of openings configured to provide fluid access into a radial gap between the metal ring member and the inner isolating member.
Abstract:
Provided herein is a gas source comprising a flow conduit having an interior volume and an open end, a remote plasma source fluidly coupled to the flow conduit, a secondary gas source extending inwardly of the interior volume of the flow conduit, the secondary gas source including at least one gas port therein positioned to flow a secondary gas inwardly of the interior volume of the flow conduit.
Abstract:
Embodiments described herein generally relate to a processing system and a method of delivering a reactant gas. The processing system includes a substrate support system, an injection cone, and an intake. The injection cone includes a linear rudder. The linear rudder is disposed such that the flow of reactant gas through the injection cone results in film growth on a specific portion of a substrate. The method includes flowing the gas through the injection cone and delivering the gas onto the substrate below. The localization of the reactant gas, allows for film growth on a specific portion of the substrate.
Abstract:
The present disclosure generally provides methods of providing at least metastable radical molecular species and/or radical atomic species to a processing volume of a process chamber during an electronic device fabrication process, and apparatus related thereto. In one embodiment, the apparatus is a gas injection assembly disposed between a remote plasma source and a process chamber. The gas injection assembly includes a body, a dielectric liner disposed in the body that defines a gas mixing volume, a first flange to couple the gas injection assembly to a process chamber, and a second flange to couple the gas injection assembly to the remote plasma source. The gas injection assembly further includes one or more gas injection ports formed through the body and the liner.
Abstract:
An adapter for a deposition chamber includes an adapter body extending longitudinally about a central axis between an upper side and lower side opposite the upper side. The adapter body has a central opening about the central axis. The adapter body has a radially outer portion having a connection surface on the lower side and a radially inner portion having a coolant channel and a stepped surface on the lower side. At least a portion of the coolant channel is spaced radially inwardly from a radially inner end of the connection surface. At least the portion of the coolant channel is disposed longitudinally below the connection surface between the connection surface and the stepped surface.
Abstract:
A process kit for use in a processing chamber includes an outer liner, an inner liner configured to be in fluid communication with a gas injection assembly and a gas exhaust assembly of a processing chamber, a first ring reflector disposed between the outer liner and the inner liner, a top plate and a bottom plate attached to an inner surface of the inner liner, the top plate and the bottom plate forming an enclosure together with the inner liner, a cassette disposed within the enclosure, the cassette comprising a plurality of shelves configured to retain a plurality of substrates thereon, and an edge temperature correcting element disposed between the inner liner and the first ring reflector.
Abstract:
A gas supply member includes a first side opposite a second side and an inner surface defining a first opening extending between the first and second sides. The gas supply member includes a third side orthogonal to the first side, the third side includes a first extension that has a face partially defining the second side, and the first extension includes a first plurality of holes extending through the first extension to the face. The gas supply member includes a fourth side opposite the third side, the fourth side includes a protrusion that has a face partially defining the second side. The gas supply member also includes a baffle disposed adjacent to the inner surface, the baffle includes a first portion extending from the inner surface and a second portion attached to the first portion, and the second portion orthogonal to the first portion and parallel to the third side.
Abstract:
Embodiments described herein generally relate to a processing chamber having one or more gas inlet ports located at a bottom of the processing chamber. Gas flowing into the processing chamber via the one or more gas inlet ports is directed along a lower side wall of the processing chamber by a plate located over each of the one or more gas inlet ports or by an angled opening of each of the one or more gas inlet ports. The one or more gas inlet ports and the plates may be located at one end of the processing chamber, and the gas flow is directed towards an exhaust port located at the opposite end of the processing chamber by the plates or the angled openings. Thus, more gas can be flowed into the processing chamber without dislodging particles from a lid of the processing chamber.
Abstract:
The present disclosure relates to a gas injection module for a process chamber. The process chamber includes a chamber body, a rotatable substrate support disposed inside a process volume of the chamber body, the substrate support configured to have a rotational spin rate; an inlet port formed in the chamber body, and an injection module coupled to the inlet port. The injection module includes a body, one or more gas inlets coupled to the body, and a plurality of nozzles formed in a supply face of the body, the supply face configured to face inside the chamber body, and gas exiting from the injection module is configured to have a flow rate; the process chamber also includes a controller configured to operate the process chamber such that the ratio of the flow rate to the rotational spin rate is between about 1/3 and 3.
Abstract:
A batch processing chamber and a process kit for use therein are provided. The process kit includes an outer liner having an upper outer liner and a lower outer liner, an inner liner, and a top plate and a bottom plate attached to an inner surface of the inner liner. The top plate and the bottom plate form an enclosure together with the inner liner, and a cassette is disposed within the enclosure. The cassette including shelves configured to retain a plurality of substrates thereon. The inner liner has inlet openings disposed on an injection side of the inner liner and configured to be in fluid communication with a gas injection assembly of a processing chamber, and outlet openings disposed on an exhaust side of the inner liner and configured to be in fluid communication with a gas exhaust assembly of the processing chamber. The inner surfaces of the enclosure comprise material configured to cause black-body radiation within the enclosure.