Abstract:
One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles.
Abstract:
A thermo-mechanical treatment process is disclosed. A nickel-base alloy workpiece is heated in a first heating step to a temperature greater than the M23C6 carbide solvus temperature of the nickel-base alloy. The nickel-base alloy workpiece is worked in a first working step to a reduction in area of 20% to 70%. The nickel-base alloy workpiece is at a temperature greater than the M23C6 carbide solvus temperature when the first working step begins. The nickel-base alloy workpiece is heated in a second working step to a temperature greater than 1700 F (926 C) and less than the M23C6 carbide solvus temperature of the nickel-base alloy. The nickel-base alloy workpiece is not permitted to cool to ambient temperature between completion of the first working step and the beginning of the second heating step. The nickel-base alloy workpiece is worked to a second reduction in area of 20% to 70%. The nickel-base alloy workpiece is at a temperature greater than 1700 F (926 C) and less than the M23C6 carbide solvus temperature of the nickel-base alloy when the second working step begins.
Abstract:
Processes and methods related to processing and hot working alloy ingots are disclosed. A metallic material layer is deposited onto at least a region of a surface of an alloy ingot before hot working the alloy ingot. The processes and methods are characterized by a reduction in the incidence of surface cracking of the alloy ingot during hot working.
Abstract:
A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
Abstract:
Forge lubrication processes are disclosed. A solid lubricant (38) sheet is placed between a workpiece (30) and a die (34; 36) in a forging apparatus. Force is applied to the workpiece (30) with the die (34; 36) to plastically deform the workpiece. The solid lubricant sheet (38) decreases the shear factor for the forging system and reduces the incidence of die-locking.
Abstract:
A method of processing a metal alloy includes heating to a temperature in a working temperature range from a recrystallization temperature of the metal alloy to a temperature less than an incipient melting temperature of the metal alloy, and working the alloy. At least a surface region is heated to a temperature in the working temperature range. The surface region is maintained within the working temperature range for a period of time to recrystallize the surface region of the metal alloy, and the alloy is cooled so as to minimize grain growth. In embodiments including superaustenitic and austenitic stainless steel alloys, process temperatures and times are selected to avoid precipitation of deleterious intermetallic sigma-phase. A hot worked superaustenitic stainless steel alloy having equiaxed grains throughout the alloy is also disclosed.
Abstract:
The present invention relates to apparatus and method for melting and atomizing metals and metallic alloys to produce large diameter ingots. The apparatus and methods employ equipment and techniques that utilize electrons
Abstract:
A method of processing an alloy workpiece to reduce thermal cracking may comprise spraying a metallic coating material onto at least a portion of a surface of the alloy workpiece to form a surface coating metallurgically bonded to the alloy workpiece. The surface coating may be more ductile than the alloy workpiece and reduces heat loss from the alloy workpiece.
Abstract:
A method of processing a workpiece to inhibit precipitation of intermetallic compounds includes at least one of thermomechanically processing and cooling a workpiece including an austenitic alloy. During the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time.
Abstract:
An austenitic alloy may generally comprise, in weight percentages based on total alloy weight: up to 0.2 carbon; up to 20 manganese; 0.1 to 1.0 silicon; 14.0 to 28.0 chromium; 15.0 to 38.0 nickel; 2.0 to 9.0 molybdenum; 0.1 to 3.0 copper; 0.08 to 0.9 nitrogen; 0.1 to 5.0 tungsten; 0.5 to 5.0 cobalt; up to 1.0 titanium; up to 0.05 boron; up to 0.05 phosphorous; up to 0.05 sulfur; iron; and incidental impurities.