Abstract:
A method of processing an alloy workpiece to reduce thermal cracking may comprise spraying a metallic coating material onto at least a portion of a surface of the alloy workpiece to form a surface coating metallurgically bonded to the alloy workpiece. The surface coating may be more ductile than the alloy workpiece and reduces heat loss from the alloy workpiece.
Abstract:
A thermo-mechanical treatment process is disclosed. A nickel-base alloy workpiece is heated in a first heating step to a temperature greater than the M23C6 carbide solvus temperature of the nickel-base alloy. The nickel-base alloy workpiece is worked in a first working step to a reduction in area of 20% to 70%. The nickel-base alloy workpiece is at a temperature greater than the M23C6 carbide solvus temperature when the first working step begins. The nickel-base alloy workpiece is heated in a second working step to a temperature greater than 1700 F (926 C) and less than the M23C6 carbide solvus temperature of the nickel-base alloy. The nickel-base alloy workpiece is not permitted to cool to ambient temperature between completion of the first working step and the beginning of the second heating step. The nickel-base alloy workpiece is worked to a second reduction in area of 20% to 70%. The nickel-base alloy workpiece is at a temperature greater than 1700 F (926 C) and less than the M23C6 carbide solvus temperature of the nickel-base alloy when the second working step begins.
Abstract:
A method for refining and casting metals and metal alloys includes melting and refining a metallic material and then casting the refined molten material by a nucleated casting technique. The casting metals and metal alloys is refined by a melting and refining apparatus (20), and the refined molten material is provided to the atomizing nozzle (62) of a nucleated casting apparatus (60) through a transfer apparatus (40) adapted to maintain the purity of the molten refined material. The melting and refining apparatus (20), the transfer apparatus (40), and the nucleated casting appartus (60) are in serial fluid communication.
Abstract:
The present invention is directed to methods and apparatus (201) that use electrostatic and/or electromagnetic fields (203) to enhance the process of spray forming preforms or powders (8). The present invention also describes methods and apparatus for atomization and heat transfer with non-equilibrium plasmas (24). The present invention is also directed to articles, particularly for use in gas turbine engines, produced by the methods of the invention.
Abstract:
A method of processing a workpiece to inhibit precipitation of intermetallic compounds includes at least one of thermomechanically processing and cooling a workpiece including an austenitic alloy. During the at least one of thermomechanically working and cooling the workpiece, the austenitic alloy is at temperatures in a temperature range spanning a temperature just less than a calculated sigma solvus temperature of the austenitic alloy down to a cooling temperature for a time no greater than a critical cooling time.
Abstract:
An austenitic alloy may generally comprise, in weight percentages based on total alloy weight: up to 0.2 carbon; up to 20 manganese; 0.1 to 1.0 silicon; 14.0 to 28.0 chromium; 15.0 to 38.0 nickel; 2.0 to 9.0 molybdenum; 0.1 to 3.0 copper; 0.08 to 0.9 nitrogen; 0.1 to 5.0 tungsten; 0.5 to 5.0 cobalt; up to 1.0 titanium; up to 0.05 boron; up to 0.05 phosphorous; up to 0.05 sulfur; iron; and incidental impurities.
Abstract:
A method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking may generally comprise depositing a glass material onto at least a portion of a surface of a workpiece, and heating the glass material to form a surface coating on the workpiece that reduces heat loss from the workpiece. The present disclosure also is directed to an alloy workpieces processed according to methods described herein, and to articles of manufacture including or made from alloy workpieces made according to the methods.
Abstract:
The present disclosure relates to electroslag remelting methods and apparatus for producing metallic ingots, as well as to articles of manufacture made from materials processed according to the methods and/or using the apparatus. One such method includes disposing slag within a withdrawal mold (2) comprising a model wall and an electrically conductive member (8) disposed through the mold wall, contacting the slag (4) with a consumable electrode (6), and heating the slag by conducting an electrical current through the consumable electrode into the slag, thereby melting at least a portion of the consumable electrode in contact with the slag. At least a fraction of the melted portion of the consumable electrode is collected in the withdrawal mold to form the ingot. At least a portion of the electrical current is conducted form the slag (4) through the electrically conductive member (8).