Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. In some embodiments, the ionically conductive compounds are useful for electrochemical cells. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium-sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Articles, compositions, and methods involving ionically conductive compounds are provided. The disclosed ionically conductive compounds may be incorporated into an electrochemical cell (e.g., a lithium- sulfur electrochemical cell, a lithium-ion electrochemical cell, an intercalated-cathode based electrochemical cell) as, for example, a protective layer for an electrode, a solid electrolyte layer, and/or any other appropriate component within the electrochemical cell. In certain embodiments, electrode structures and/or methods for making electrode structures including a layer comprising an ionically conductive compound described herein are provided.
Abstract:
Composite structures including an ion-conducting material and a polymeric material (e.g., a separator) to protect electrodes are generally described. The ion-conducting material may be in the form of a layer that is bonded to a polymeric separator. The ion-conducting material may comprise a lithium oxysulfide having a lithium-ion conductivity of at least at least 10 -6 S/cm.
Abstract translation:通常描述包括用于保护电极的离子传导材料和聚合材料(例如隔膜)的复合结构。 离子导电材料可以是与聚合物分离器结合的层的形式。 离子导电材料可以包含锂离子电导率至少为10 -6 S / cm 2的氧硫化硫。
Abstract:
Verfahren zur Herstellung eines metallischen Formkörpers aus einer thermoplastischen Masse durch Spritzgießen oder Extrusion zu einem Formteil, Entfernen des Bindemittels und Sintern, wobei eine thermoplastische Masse aus einem Metallpulver und einer Polymermischung B 1 ) und B 2 ) auf Basis eines Polyoxymethylenhomo- oder copolymerisats B 1 ) als Bindemittel eingesetzt wird, und zum Entfernen des Bindemittels a) das Formteil mit einem Lösungsmittel behandelt wird, welches die Binde mittelkomponente B 2 ) aus dem Formteil extrahiert und in welchem die Bin demittelkomponente B 1 ) unlöslich ist, b) dann das Lösungsmittel durch Trocknen aus dem Formteil entfernt wird, und c) das Formteil thermisch bei 140 bis 200°C in einer sauerstoffhaltigen Atmosphäre behandelt wird, wodurch die Bindemittelkomponente B 1 ) aus dem Formteil entfernt wird; sowie ein dadurch erhältlicher metallischer Formkörper.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Formteilen aus mit Polysulfid getränktem porösem Material, umfassend folgende Schritte: (a) Einlegen des porösen Materials in ein Formwerkzeug; (b) Einbringen von flüssigem Polysulfid in das Formwerkzeug mit einer Fließgeschwindigkeit im porösen Material im Bereich von 0,5 bis 200 cm/s; (c) Abkühlen des Polysulfids auf eine Temperatur unterhalb der Schmelztemperatur des Polysulfids; (d) Entnehmen des mit dem Polysulfid getränkten porösen Materials.
Abstract:
Process for making an electrode active material according to general formula Li 1+x ΤΜ 1-x O 2 , wherein TM is a combination of Mn, Co and Ni, optionally in combination with at least one more metal selected from Al, Ti, and W, wherein at least 50 mole-% of TM is Ni, and x is in the range of from zero to 0.2, said process comprising the following steps: (a) mixing (A) a mixed oxide or oxyhydroxide or hydroxide of TM, and (B) at least one lithium compound selected from lithium hydroxide, lithium oxide and lithium carbonate, and so that the molar ratio of Li to TM is in the range of from 0.70 to 0.97. (b) Subjecting said mixture to heat treatment at a temperature in the range of from 300 to 900°C, (c) Mixing with at least one lithium compound (B), so that the total molar ratio of Li to TM is in the range of from 1.0 to 1.1, (d) Subjecting said mixture to heat treatment at a temperature in the range of from 700 to 1000°C.
Abstract:
Described are a kit comprising at least two magnetocaloric materials having identical stoichiometry but different Curie temperature, a magnetocaloric regenerator comprising at least two magnetocaloric materials having identical stoichiometry but different Curie temperature and a process for producing at least two magnetocaloric materials having identical stoichiometry but different Curie temperature.
Abstract:
The present invention relates to a rechargeable electrochemical cell comprising (a) at least one cathode (a) comprising at least one electroactive sulfur-containing material, (b) at least one anode (b) comprising at least one alkali metal, (c) at least one electrolyte composition (c) comprising (c1) at least one solvent (c1), and (c2) at least one alkali metal salt (c2), and (d) at least one alkali-ion conducting separator assembly (d) comprising (A) a continuous matrix (A) of at least one polymer, and (B) particles (B) of an alkali-ion conducting material, which are embedded in the continuous matrix (A), wherein at least 50 % of the embedded particles (B) penetrate both sides of the continuous matrix (A) and are uncovered by matrix (A). The present invention further relates to a device comprising such a rechargeable electrochemical cell.