Abstract:
The disclosed invention includes a method of making an optical fiber drawn from a multiple crucible. The method includes moving a first crucible of the multiple crucible relative to a second crucible of the multiple crucible. The invention also includes minimizing core and cladding diffusion. A tip of the first crucible is disposed axially above a tip of the second crucible by a preselected distance. The invention further includes the ability to alter a diameter of the core of the fiber. A differential pressure is applied to the first crucible. A positive differential pressure is applied to increase the core diameter. A negative differential pressure is applied to decrease the core diameter. Furthermore, the invention includes drawing the fiber under non-isothermal conditions.
Abstract:
An apparatus for drawing a glass ribbon including an edge roll assembly that contacts the glass ribbon with a force that is dynamically altered by an actuator electrically coupled to a sensor that measures the force applied against the ribbon. Dynamic, or real-time, variation of the edge roll force minimizes stress variability in the glass ribbon and improves ribbon shape control.
Abstract:
A method of making an optical fiber precursor includes generating vapors from an alkali metal source comprising compound containing oxygen and one or more alkali metals and applying the vapors to a surface of a glass article comprising silica at a temperature that promotes diffusion of the alkali metal into the surface of the glass article. An optical fiber has a core comprising silica and an alkali metal oxide of the form X 2 O, where X is selected from the group consisting of K, Na, Li, Cs, and Rb, wherein a concentration of the alkali metal oxide along a length of the core is uniform.
Abstract translation:制造光纤前体的方法包括从包含氧和一种或多种碱金属的化合物的碱金属源生成蒸气,并在促进碱金属扩散的温度下将蒸气施加到包含二氧化硅的玻璃制品的表面 玻璃制品的表面。 光纤具有包含二氧化硅和X 2 O 2形式的碱金属氧化物的核,其中X选自K,Na,Li,Cs和Rb,其中浓度 的碱金属氧化物沿芯的长度是均匀的。
Abstract:
Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (dl) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.