Abstract:
An integrated circuit device may include a reconfigurable analog signal switching fabric comprising a plurality of global buses that are selectively connected to external pins by pin connection circuits in response to changeable analog routing data, and a plurality of local buses that are selectively connected to analog blocks and/or global buses by routing connection circuits in response to the analog routing data; and at least one processor circuit that executes predetermined operations in response to instruction data.
Abstract:
In one embodiment, an integrated circuit device includes a power on reset (POR) circuit (230) and a stochastic reset circuit (310) configured to control enabling and disabling of the POR circuit (230). The stochastic reset circuit (310) may have a value from among many possible values. The POR circuit (310) may be enabled during a power up sequence of the device when the value of the stochastic reset during the power up is not a value designated to allow disabling of the POR circuit (230). The stochastic reset circuit (310) may be configured such that the probability of the POR circuit (230) being disabled during the power up is extremely low. After the power up sequence, the stochastic reset circuit (310) may be controlled to allow disabling of the POR circuit (230) to conserve power.
Abstract:
A biasing circuit includes cascoded transistors including a first transistor and a second transistor. A first gate of the first transistor is coupled to a second gate of the second transistor at a first node. The circuit also includes a voltage control circuit coupled to at least one of the first transistor or the second transistor. The voltage control circuit is configured to change a voltage level of at least one of the first transistor or the second transistor to allow voltage domain transition of an output signal in view of a change in state of an input signal without ramping a supply signal of the biasing circuit.
Abstract:
An apparatus includes a charge pump array including multiple charge pump cells. The charge pump array is configurable into a first arrangement of the charge pump cells coupled in series or a second arrangement of the charge pump cells coupled in parallel. The apparatus can include reconfiguration circuitry configured to select the first arrangement of the charge pump cells or the second arrangement of the charge pump cells. The charge pump array is configured to alter a voltage level of a signal based, at least in part, on the selected arrangement of the charge pump cells.
Abstract:
Embodiments of the invention relate to a state-monitoring memory element. The state-monitoring memory element may have a reduced ability to retain a logic state than other regular memory elements on an IC. Thus, if the state-monitoring memory elements fails or loses state during testing, it may be a good indicator that the ICs state retention may be in jeopardy, possibly requiring the IC to be reset. The state-monitoring memory element may be implemented by degrading an input voltage supply to the state-monitoring memory element across a diode and/or a transistor. One or more current sources may be used to stress the state-monitoring memory element. A logic analyzer may be used to analyze the integrity of the state-monitoring memory element and trigger appropriate actions in the IC, e.g., reset, halt, remove power, interrupt, responsive to detecting a failure in the state-monitoring memory element. Multiple state-monitoring memory elements may be distributed in different locations on the IC for better coverage.
Abstract:
A capacitance-sensing circuit may include a channel input associated with measuring a capacitance of a unit cell of a capacitive sense array. The capacitance-sensing circuit may also include a capacitive hardware baseliner that is coupled to the channel input. The capacitive hardware baseliner may generate a baseline current using a baseline capacitor and may provide the baseline current to the channel input.
Abstract:
A liquid crystal display (LCD) driving system includes a reference voltage generator to generate a plurality of reference voltages. The LCD driving system also includes a plurality of drive buffers to generate drive voltages according to at least one of the reference voltages, and to drive at least a portion of a liquid crystal display to present data according to the drive voltages.