Abstract:
A hydrosilylation process is used to prepare a clustered functional polyorganosiloxane. The clustered functional polyorganosiloxane comprises a reaction product of a reaction of a) a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups; b) a polyorganohydrogensiloxane having an average of 4 to 15 silicon atoms per molecule; and c) a reactive species having, per molecule at least 1 aliphatically unsaturated organic group and 1 or more radical curable groups selected from an acrylate group and a methacrylate group; in the presence of d) a hydrosilylation catalyst, and e) an isomer reducing agent. The weight percent of silicon bonded hydrogen atoms in component b) divided by the weight percent of aliphatically unsaturated organic groups in component a) (the SiH b /Vi a ratio) ranges from 4/1 to 20/1. The resulting clustered functional polyorganosiloxane is useful in a curable silicone composition for electronics applications.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
This invention relates to a method comprising (1) heating in the presence of a catalyst a mixture comprising (i) at least one organohydrogensilicon compound containing at least one silicon-bonded hydrogen atom per molecule or a reaction product obtained by mixing in the presence of a platinum group metal-containing catalyst at least one organohydrogensilicon compound containing at least one silicon-bonded hydrogen atom per molecule and at least one compound having at least one aliphatic unsaturation, (ii) at least one endblocker, and optionally (iii) at least one organosiloxane chosen from a hydrolyzate or a cyclosiloxane, so to cause polymerization of components (i), (ii), and optionally (iii) to form silicon-bonded hydrogen containing branched polymers.
Abstract:
A method comprising heating in the presence of a catalyst, a mixture comprising (i) a reaction product obtained by mixing in the presence of a platinum group metal-containing catalyst at least one organohydrogensilicon compound containing at least one silicon-bonded hydrogen atom per molecule and at least one compound having at least one aliphatic unsaturation; (ii) at least one endblocker, and optionally (iii) at least one organosiloxane chosen from a hydrolyzate or a cyclosiloxane, so to cause polymerization of components (i), (ii), and optionally (iii) to form branched polymers.
Abstract:
A moisture-curable silicone adhesive composition is provided that comprises (A) a reactive resin, (B) a reactive polymer, (C) a moisture cure catalyst, and (D) a crosslinker resin. The reactive resin (A) comprises the reaction product of a reaction of an alkenyl-functional siloxane resin comprising R 3 SiO 1/2 units and SiO 4/2 units and an alkoxysilane-functional organosiloxane compound having at least one silicon-bonded hydrogen atom in the presence of a hydrosilylation catalyst. The reactive polymer (B) comprises the reaction product of a reaction of an alkoxysilane-functional organosiloxane compound having at least one silicon-bonded hydrogen atom and a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups in the presence of a hydrosilylation catalyst.
Abstract:
A method for forming a thermally conductive thermal radical cure silicone composition comprising (I) a clustered functional polyorganopolysiloxane; optionally (II) a silicone reactive diluent, (III) a filler comprising a thermally conductive filler, (ΙΙI') a filler treating agent, and (IV) a radical initiator is provided. In this method, the clustered functional polyorganosiloxane (I) and the optional silicone reactive diluent (II) are premade prior to their addition to respective components (III), (III') and (IV).
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A hydrosilylation process is used to prepare a polyorganosiloxane having clustered functional groups at the polyorganosiloxane chain terminals. The ingredients used in the process include a) a polyorganosiloxane having an average of at least 2 aliphatically unsaturated organic groups per molecule, b) a polyorganohydrogensiloxane having an average of 4 to 15 silicon atoms per molecule and at least 4 silicon bonded hydrogen atoms for each aliphatically unsaturated organic group in ingredient a), c) a reactive species having, per molecule at least 1 aliphatically unsaturated organic group and 1 or more curable groups; and d) a hydrosilylation catalyst. The resulting clustered functional polyorganosiloxane is useful in a curable silicone composition for electronics applications.