Abstract:
In one aspect, there is provided a method of coupling a first aromatic compound having a fluorosulfonate substituent to a second aromatic compound having a boron-containing substituent. In another aspect, there is provided a method of coupling a first aromatic compound having a hydroxyl substituent to a second aromatic compound having a boron-containing substituent in a one-pot reaction.
Abstract:
4-Alkoxy-3-hydroxypicolinic acids may be conveniently prepared from 4,6-dibromo-3-hydroxypicolinonitrile in a series of chemical steps selected from bromo substitution, nitrile hydrolysis and halogen reduction that are conducted as a single pot process. 4,6-Dibromo-3-hydroxypicolinonitrile may be prepared from furfural in a series of chemical steps selected from cyano-amination, amine salt formation and bromination-rearrangement.
Abstract:
4-Alkoxy-3-hydroxypicolinic acids may be conveniently prepared from 4,6-dibromo-3-hydroxypicolinonitrile in a series of chemical steps selected from bromo substitution, nitrile hydrolysis and halogen reduction that are conducted as a single pot process. 4,6-Dibromo-3-hydroxypicolinonitrile may be prepared from furfural in a series of chemical steps selected from cyano-amination, amine salt formation and bromination-rearrangement. 4-Alkoxy-3-acetoxypicolinic acids may be conveniently prepared from 4-alkoxy-3-hydroxypicolinic acids by treatment with acetic anhydride.
Abstract:
4-Amino-3-chloro-6-(substituted)picolinates are prepared from difluoroacetic acid or trifluoroacetic acid, tritylamine or t-butylamine as a protecting group, a 3,3-dialkoxyprop-1-yne and a substituted methylene amine by a series of steps. Provided herein are processes for the preparation of 4-amino-5-fluoro-3-halo-6-(substituted)picolinates and 4-amino-3-halo-6-(substituted)picolinates. More particularly, provided herein are processes for the preparation of 4-amino-5-fluoro-3-halo-6-(substituted)picolinates and 4-amino-3-halo-6- (substituted)picolinates from a non-pyridine source. These picolinates are useful as herbicides.
Abstract:
4,5,6-Trichloropicolinic acid is prepared by selectively dechlonnating 3,4,5,6- tetrachloropicolinic acid with zinc and a catalyst prepared from a nickel compound and a bidentate ligand in a polar solvent. A process for the preparation of 4,5,6-trichloro-picolinic acid by the regioselective reductive dechlorination of 3,4,5,6-tetrachloropicolinic acid is provided. More particularly, the process is described for the preparation of 4,5,6-trichloropicolinic acid (Formula I) which comprises selectively dechlonnating 3,4,5,6-tetrachloropicolinic acid (Formula II) with zinc and a catalyst prepared from a nickel compound and a bidentate ligand in a polar solvent.
Abstract:
4,6-Dibromo-3-hydroxypicolinonitrile may be prepared from furfural in a series of chemical steps selected from cyano-amination, amine salt formation and bromination-rearrangement. 4-Alkoxy-3-hydroxypicolinic acids may be conveniently prepared from 4,6-dibromo-3-hydroxypicolinonitrile in a series of chemical steps selected from bromo substitution, nitrile hydrolysis and halogen reduction.
Abstract:
This disclosure relates to the field of molecules having pesticidal utility against pests in phyla Nematoda, Arthropoda, and/or Mollusca, processes to produce such molecules and intermediates used in such processes, compositions containing such molecules, and processes of using such molecules against such pests. These molecules may be used, for example, as nematicides, acaricides, insecticides, miticides, and/or molluscicides. This document discloses molecules having the following formula (Formula One).
Abstract:
The invention in this document is related to the field of preparation of 1,3-(substituted-diaryl)-1,2,4-triazoles and certain intermediates derived therefrom, where said intermediates are useful in the preparation of certain pesticides disclosed in U.S. Patent No. 8,178,658.
Abstract:
4-Amino-3-chloro-5-fluoro-6-(substituted) picolinates are conveniently prepared from 3,4;5,6-tetrachloropicolinonitrile by a series of steps involving fluorine exchange, amination, halogen exchange and hydrolysis, esterification and transition metal assisted coupling. The present invention concerns a process for the preparation of 4-amino-3-chloro-5-fluoro-6-(substituted)picolinates. More particularly, the present invention concerns a process for the preparation of 4-amino-3-chloro-5-fluoro-6-(substituted)picolinates in which the 5-fluoro substituent is introduced by a halogen exchange early in the process scheme.
Abstract:
A fungicidal 4-methoxy-3-acetyloxypicolinamide may be conveniently prepared in processes that include the coupling together of 4-methoxy-3-acetyloxypicolinic acid or 4-methoxy-3-hydroxypicolinic acid with a key 2-aminopropanoate ester derived from a 1,1-bis(4-fluorophenyl)propane-1,2-diol.