Abstract:
The present invention is directed to an electroconductive thick film paste composition comprising Ag and a Pb-free bismuth-tellurium-oxide both dispersed in an organic medium. The present invention is further directed to an electrode formed from the paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The present invention is also directed to the bismuth-tellurium oxide that is a component of thick film pastes.
Abstract:
A conductive silver via paste comprising particulate conductive silver, a lead-tellurium-lithium-titanium-oxide, titanium resinate and an organic vehicle is particularly useful in providing the metallization of the holes in the silicon wafers of MWT solar cells. The result is a metallic electrically conductive via between the collector lines on the front side and the emitter electrode on the back-side of the solar cell. The paste can also be used to form the collector lines on the front-side of the solar cell and the emitter electrode on the back-side of the solar cell. Also disclosed are metal-wrap-through silicon solar cells comprising the fired conductive silver paste.
Abstract:
A conductive silver via paste comprising particulate conductive silver, a vanadium-phosphorus-antimony-zinc-based-oxide, a tellurium-boron-phosphorus-based-oxide or a tellurium-molybdenum-cerium-based-oxide and an organic vehicle is particularly useful in providing the metallization of the holes in the silicon wafers of MWT solar cells. The result is a metallic electrically conductive via between the collector lines on the front side and the emitter electrode on the back-side of the solar cell. The paste can also be used to form the collector lines on the front-side of the solar cell and the emitter electrode on the back-side of the solar cell. Also disclosed are metal-wrap-through silicon solar cells comprising the fired conductive silver paste.
Abstract:
An aluminium paste having no or only poor fire-through capability comprises aluminium particles, at least one glass frit containing 0.5 to 15 wt.% SiO2, 0.3 to 10 wt.% Al2O3 and 67 to 75 wt.% Bi2O3 (the weight percentages being based on the total weight of the glass frit) and an organic vehicle. The aluminium paste is used in the manufacture of aluminium back electrodes of PERC (passivated emitter and rear contact) silicon solar cells, wherein the paste is applied on a perforated dielectric passivation layer on the back-side of a silicon wafer and subsequently dried and fired or, alternatively, wherein the paste is applied on a non-perforated passivation layer on the back-side of a silicon wafer, dried and fired and the aluminium layer and the passivation layer are subsequently laser fired to produce perforations in the passivation layer and to form local BSF (back surface field) contacts.
Abstract translation:没有或仅有差的穿火能力的铝浆包括铝颗粒,至少一种含有0.5至15重量%SiO 2,0.3至10重量%的Al 2 O 3和67至75重量%的Bi 2 O 3的玻璃料(重量百分数为 基于玻璃料的总重量)和有机载体。 铝浆用于制造PERC(钝化发射器和后接触)硅太阳能电池的铝背电极,其中将糊剂施加在硅晶片背面上的穿孔电介质钝化层上,随后干燥和烧制 或者替代地,其中将糊剂施加在硅晶片的背侧上的非穿孔钝化层上,干燥和烧制,随后激光烧制铝层和钝化层以在钝化层中产生穿孔,并且 形成本地BSF(背面场)接触。
Abstract:
The present invention is directed to an electroconductive thick film paste composition comprising Ag and a Pb-free bismuth-tellurium-oxide both dispersed in an organic medium. The present invention is further directed to an electrode formed from the paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The present invention is also directed to the bismuth-tellurium oxide that is a component of thick film pastes.
Abstract:
A conductive paste composition contains a source of an electrically conductive metal, a lead-tellurium-based oxide, a discrete oxide of an adhesion promoting element, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the paste composition on a semiconductor substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and lead-tellurium-based oxide.
Abstract:
A process for the production of a MWT silicon solar cell comprising the steps: (1) providing an n-type silicon wafer with (i) holes forming vias between the front-side and the back-side of the wafer and (ii) a p-type emitter extending over the entire front-side and the inside of the holes, (2) applying a conductive metal paste to the holes of the silicon wafer to provide at least the inside of the holes with a metallization, (3) drying the applied conductive metal paste, and (4) firing the dried conductive metal paste, whereby the wafer reaches a peak temperature of 700 to 900C, wherein the conductive metal paste has no or only poor fire-through capability and comprises (a) at least one particulate electrically conductive metal selected from the group consisting of silver, copper and nickel, (b) at least one particulate p-type dopant, and (c) an organic vehicle.
Abstract:
A process for the production of a MWT silicon solar cell comprising the steps: (1) providing a p-type silicon wafer with (i) holes forming vias between the front-side and the back-side of the wafer and (ii) an n-type emitter extending over the entire front-side and the inside of the holes, (2) applying a conductive metal paste to the holes of the silicon wafer to provide at least the inside of the holes with a metallization, (3) drying the applied conductive metal paste, and (4) firing the dried conductive metal paste, whereby the wafer reaches a peak temperature of 700 to 900°C, wherein the conductive metal paste has no or only poor fire-through capability and comprises (a) at least one particulate electrically conductive metal selected from the group consisting of silver, copper and nickel and (b) an organic vehicle.