Abstract:
Disclosed are foam compositions and processes to form closed-cell phenolic foams. The foams comprises a continuous polymeric phase defining a plurality of cells, wherein the continuous polymeric phase comprises a phenol-formaldehyde resole derived from a phenol and formaldehyde, and wherein the plurality of cells comprises a plurality of open-cells and a plurality of closed-cells with an open-cell content measured according to ASTM D6226-5, of less than 50%. The foam composition also comprises a discontinuous phase disposed in at least a portion of the plurality of closed-cells, the discontinuous phase comprising 1,1,1,4,4,4-hexafluoro-2-butene
Abstract:
Disclosed are foam compositions and processes to form mixed tannin-phenolic foams. The foams comprises a continuous polymeric phase defining a plurality of cells, wherein the continuous polymeric phase comprises a mixed-resin derived from a phenol, a tannin, and a first monomer, and wherein the plurality of cells comprises a plurality of open-cells and a plurality of closed-cells with an open-cell content measured according to ASTM D6226-5, of less than 50%. The foam composition also comprises a discontinuous phase disposed in at least a portion of the plurality of closed-cells, the discontinuous phase comprising one or more blowing agents.
Abstract:
Described is the preparation of sulfonated polyoxadiazole polymers with a high degree of sulfonation and good flammability properties. The polymers are useful in articles such as fibers.
Abstract:
Disclosed herein are lignin-furfuryl alcohol compositions, lignin-furfuryl alcohol-resole (LFR) compositions comprising lignin-furfuryl alcohol composition and phenolic resoles and LFR foams derived from such LFR compositions. Disclosed herein are LFR foams comprising a polymeric phase defining a plurality of open cells and a plurality of closed cells, and a gas phase comprising one or more blowing agents disposed in at least a portion of the plurality of closed cells, wherein the polymeric phase is derived from LFR compositions.
Abstract:
A hydrocolloid or aqueous solution comprising a poly alpha-1,3-glucan ether compound is disclosed having a viscosity of at least about 10 centipoise (cPs). The poly alpha-1,3-glucan ether compound in these compositions has a degree of substitution of about 0.05 to about 3.0. Also disclosed is a method for increasing the viscosity of a hydrocolloid or aqueous composition using a poly alpha-1,3-glucan ether compound.
Abstract:
Described are sulfonated polyoxadiazole polymers with a high degree of sulfonation and good flammability properties. The polymer has repeat units of Formula (I) and one or both of Formula (II) and (IIa): wherein M is a cation. The polymers are useful in articles such as fibers.
Abstract:
Soy polysaccharide ether compounds are disclosed herein comprising uncharged, anionic, and/or cationic organic groups. The degree of substitution of one or more ether compounds is about 0.0025 to about 3.0. Also disclosed are methods of producing these soy polysaccharide ether compounds, as well as methods of their use for increasing the viscosity of aqueous compositions. Compositions comprising ether compounds are also disclosed.
Abstract:
Disclosed are foam compositions and processes to form closed-cell tannin-based foams. The process comprises forming an agglomerate-free solution comprising a tannin, a first monomer, a second monomer, and water, wherein the first monomer comprises formaldehyde, paraformaldehyde, furfural, glyoxal, acetaldehyde, 5-hydroxymethylfurfural, acroleim, levulinate esters, sugars, 2,5-furandicarboxylic acid, 2,5-furandicarboxylic aldehyde, urea, difurfural (DFF), or mixtures thereof, and the second monomer comprises furfuryl alcohol, glycerol, sorbitol, lignin, or mixtures thereof. The process also comprises mixing one or more blowing agents with the agglomerate-free solution to form a pre-foam mixture and mixing an acid catalyst with the pre-foam mixture to form a foam composition. The process comprises adding a surfactant to at least one of the agglomerate-free solution, pre-foam mixture, or the foam composition. The process further comprises processing the foam composition to form a tannin-based foam.
Abstract:
Disclosed are foam compositions and processes to form closed-cell tannin-based foams. The foams comprises a continuous polymeric phase defining a plurality of cells, wherein the continuous polymeric phase comprises a tannin-based resin derived from a tannin, a first monomer, and a second monomer, wherein the first monomer comprises formaldehyde, paraformaldehyde, furfural, glyoxal, acetaldehyde, 5-hydroxymethylfurfural, acrolein, levulinate esters, sugars, 2,5-furandicarboxylic acid, 2,5-furandicarboxylic aldehyde, urea, difurfural (DFF), or mixtures thereof, and the second monomer comprises furfuryl alcohol, glycerol, sorbitol, lignin, or mixtures thereof, and wherein the plurality of cells comprises a plurality of open-cells and a plurality of closed-cells with an open-cell content measured according to ASTM D6226-5, of less than 50%. The foam composition also comprises a discontinuous phase disposed in at least a portion of the plurality of closed-cells, the discontinuous phase comprising one or more blowing agents.