Abstract:
An implantable ophthalmic device with flexible, fluid-filled membranes provide dynamically variable optical power to restore lost accommodation in individuals suffering from presbyopia or aphakia without moving parts or reducing the amount of transmitted light. Actuating the device causes the fluid-filled membrane to change curvature, which produces a corresponding change in optical power. For instance, squeezing the edge of the membrane causes the center of the membrane to bulge by an amount proportional to the squeezing force. Alternatively, heating or applying a voltage to the membrane may cause the liquid in the membrane to undergo a phase transition accompanied by a corresponding change in volume that causes the membrane to inflate so as to change the optical power of the device.
Abstract:
An implantable ophthalmic device with one or more optical elements coupled to one or more shape-memory members provides dynamically variable optical power to restore lost accommodation in individuals suffering from presbyopia or aphakia. Running current from a power supply through the shape-memory members causes the shape-memory members to heat up. Once the current heats the shape-memory members past a forward phase-transition temperature, the shape-memory members change shape, which, in turn, causes the optical element(s) to move, yielding a corresponding change in effective optical power. Cooling the shape-memory members (e.g., by reducing or stopping the flow of current) below a reverse phase-transition temperature causes the shape-memory members to return to their original shape, which, in turn, restoring the optical element(s) to their original positions and returning the effective optical power to its original level.
Abstract:
An implantable ophthalmic device, such as an intraocular lens, includes two or more apertures whose sizes, shapes, and positions are fixed with respect to the device itself. Each of these static apertures replicates an incident image beam as a shifted image beam, where the direction and magnitude of the shift depend on the static aperture's position with respect to the device's optical axis. The device also includes a prismatic element optically coupled to each static aperture. Each prismatic element receives the shifted image beam from its corresponding static aperture and refracts the shifted image beam such that the resulting refracted beams form a single image at the image plane (retina). Together, the static apertures and the prismatic elements increase the device's effective depth of field (e.g., by up to three Diopters).
Abstract:
Implantable ophthalmic devices with aspheric lenses and dynamic electro-active elements offer excellent depth of field and image quality while providing high optical throughput. An exemplary implantable ophthalmic device includes an aspheric lens with a negative spherical aberration that varies with radius. The aspheric lens can have peak optical powers at its geometric centers surrounded by a region of varying optical power (with varying slope) that extends radially from its center. When implanted, these aspheric lenses provide an incremental optical power that varies as a function of pupil diameter, which changes with object distance, for viewing far, intermediate, and near objects. The aspheric lens may also bonded or integrally formed with a spherical lens that provides fixed optical power for viewing far objects and/or a dynamic electro-active element that with two or more states (e.g., on and off) for increasing the effective optical power when viewing near objects.
Abstract:
Described herein is an implantable intraocular lens that can automatically adjust its optical power based on the eye's natural response for accommodation of targets at varying distances. The implantable intraocular lens includes a physiological sensor for detecting a physiological response of an eye associated with an ocular accommodation, and an electro-optical element configured to adjust optical power based on the detected physiological response of the eye.
Abstract:
A sensor system includes at least two sensors for distinguishing accommodative stimuli from changes in ambient lights levels and task-induced changes in the pupil diameter. When implanted, the first sensor is disposed completely within the pupil; even when fully constricted, the pupil does not occlude the first sensor, allowing the sensor to make precise measurements of ambient luminous flux levels. The pupil occludes part of the second sensor's active area(s) as the pupil dilates and constricts. As a result, the second sensor measures both ambient luminous flux and pupil diameter. A processor estimates the pupil diameter and determines whether it's changing in response to accommodative stimuli or other factors by comparing to predetermined values. The sensor system sends a signal to an optical component, which in turn can respond by changing optical power to focus for near vision upon detection of accommodative stimuli.
Abstract:
An intraocular implant (IOI) includes a lens structure with variable optical power, a sensor that detects an optical accommodation response, a rechargeable power storage device, a recharging interface, a wireless communication interface, and a controller. The controller can receive information from the sensor indicating an optical accommodation response, control the lens structure to vary the variable optical power based on the information received from the sensor, control the recharging interface to recharge the rechargeable power storage device, and further control the recharging interface to receive power for operation of the IOI, and transmit and receive information through the wireless communication interface.