Abstract:
A powertrain includes an internal combustion engine (10) and an electro-mechanical transmission (50). The internal combustion engine (10) has two torque output nodes operatively connected to two torque input nodes of the electro-mechanical transmission (50). The transmission (50) comprises first and second electrical machines (60, 70) operatively connected to first and second planetary gear sets (68, 78) that are selectively operative to transmit torque to an output shaft (90). The two torque output nodes of the engine (10) comprise an engine block comprising a cylinder (8) with a pair of opposed pistons (12, 14) inserted therein, and each piston operatively connected to one of a first and a second crankshaft (16, 22). The first and second crankshafts (16, 22) are operatively connected with each other.
Abstract:
An apparatus for reducing parasitic losses in a hybrid electric powertrain of a vehicle includes a drivetrain, an electric motor, and a connecting mechanism operative to selectively engage and disengage the drivetrain and the electric motor.
Abstract:
The electrically variable transmission family of the present invention provides low-content, low-cost electrically variable transmission mechanisms including first, second and third differential gear sets, a battery, two electric machines serving interchangeably as motors or generators, and two or more selectable torque-transfer devices. The selectable torque transfer devices are engaged to provide an EVT with a continuously variable range of speeds (including reverse). The torque transfer devices and the first and second motor/generators are operable to provide five operating modes in the electrically variable transmission, including battery reverse mode, EVT reverse mode, reverse and forward launch modes, continuously variable transmission range mode, and fixed ratio mode in some embodiments.
Abstract:
The electrically variable transmission family of the present invention provides low-content, low-cost electrically variable transmission mechanisms including first, second and third differential gear sets, a battery, two electric machines serving interchangeably as motors or generators and five or six selectable torque-transfer devices. The selectable torque transfer devices are engaged to provide an EVT with a continuously variable range of speeds (including reverse), four or more mechanically fixed forward speed ratios and at least one mechanical reverse speed ratio. The torque transfer devices and the first and second motor/generators are operable to provide six operating modes in the electrically variable transmission, including battery reverse mode, EVT reverse mode, reverse and forward launch modes, continuously variable transmission range mode, fixed forward mode and mechanical reverse mode.
Abstract:
The transmission has a plurality of members that can be utilized in powertrains to provide at least eight forward speed ratios and one reverse speed ratio. The transmission includes four planetary gear sets having seven torque-transmitting mechanisms, four fixed interconnections, and a stationary (grounded) member. The powertrain includes an engine and torque converter that is selectively connected to at least one of the planetary gear members and an output member that is continuously connected with another one of the planetary gear members. The seven torque-transmitting mechanisms provide interconnections between various gear members and with the transmission housing, and are operated in combinations of two to establish at least eight forward speed ratios and at least one reverse speed ratio.
Abstract:
A method is provided for controlling a hybrid vehicle powertrain, including recording a starting and ending point of a desired route, determining an optimally fuel efficient route, and executing a powertrain control strategy based on the route. Real-time traffic data and topographical data are continuously evaluated, and th route and powertrain control strategy are updated based on the data. A hybrid vehicle also provided having an engine, a motor/generator, a battery, and a navigation system receiving a route starting point and ending point. A powertrain control module (PCM) detects the battery charge and determines a powertrain strategy along an optimally fuel efficient route based on the detected charge level when the points are selected, and sustains the charge level in the absence of user-selected route points. Sensors receive real-time traffic data, and the navigation system includes topographical data for determining the optimally fuel efficient route.
Abstract:
A transmission is provided that utilizes a unique packaging scheme for torque-transmitting mechanisms and gear drive members in order to minimize the overall axial length of the transmission. Specifically, the transmission may include a clutch housing that is connected for common rotation with a transmission input member. A rotatable hub member may be connected for common rotation with both the clutch housing and a gear member, thereby connecting the gear member for common rotation with the input member. Preferably, the rotatable hub member is connected to the clutch housing by the reaction plates that extend from the clutch housing. First and second torque-transmitting mechanisms may be packaged within the clutch housing.