Abstract:
A method of cementing may include preparing a cement slurry by mixing at least water and a cement dry blend, wherein the cement dry blend comprises a cement and an activated pozzolan; and introducing the cement slurry into a wellbore penetrating a subterranean formation; and allowing the cement slurry to set to form a hardened mass.
Abstract:
Disclosed herein is a method of cementing a surface with a set-delayed cement composition. The method comprises providing a set-delayed cement composition comprising water, pumice, hydrated lime, and a set retarder. The method further comprises placing the set-delayed cement composition into or onto a surface to be cemented and allowing the set-delayed cement composition to set in the surface.
Abstract:
Disclosed is a method of forming a set cement shape. The method comprises providing a set-delayed cement composition comprising water, pumice, hydrated lime, and a set retarder; forming the set-delayed cement composition into a shape; and allowing the shaped set-delayed cement composition to set.
Abstract:
Cement compositions and associated methods for cementing. An example method includes introducing a cement composition into a wellbore penetrating a subterranean formation, the cement composition comprising a composite material, a cement, and an aqueous fluid. The composite material comprises a monophase amorphous hydraulic binder material and a particulate core. The monophase amorphous hydraulic binder material coats the particulate core. The method further comprises allowing the cement composition to set in the wellbore.
Abstract:
Disclosed herein are cement compositions and methods of using set-delayed cement compositions in subterranean formations. An embodiment includes a method of cementing in a subterranean formation comprising: providing a cement composition comprising water, pumice, hydrated lime, a set retarder, and a strength enhancer, wherein the strength enhancer comprises at least one material selected from the group consisting of cement kiln dust, slag, amorphous silica, a pozzolan, and any combination thereof; introducing the cement composition into the subterranean formation; and allowing the cement composition to set in the subterranean formation.
Abstract:
A method of servicing a wellbore comprising placing a composition comprising an emulsified resin composite into a fluid loss zone of the wellbore, wherein the emulsified resin composite comprises a nonaqueous external phase (NEP) and an aqueous internal phase (AIP), and allowing the composition to cure to form a composite material.
Abstract:
A method may include introducing into a wellbore a resin-based sealant composition comprising: a resin comprising a cycloalkene; and a transition metal compound catalyst; and allowing the resin-based sealant composition to harden in the wellbore.
Abstract:
Expansive cement compositions for use in subterranean wellbores that include a monophase amorphous hydraulic binder material (MAHBM). The MAHBM may include a plurality of particles having a silica core and an amorphous coating substantially surrounding the silica core. The coating may comprise, for example, a plurality of amorphous α-dicalcium silicate hydrate nanoparticles or microparticles. The MAHBM may be used as an expansion agent in a cement composition or used as an expansive cement by itself.
Abstract:
Disclosed is a method of cementing. The method comprises providing a set-delayed cement composition comprising water, pumice, hydrated lime, a set retarder, and a micro-electrical-mechanical system; and allowing the set-delayed cement composition to set
Abstract:
Embodiments relate to cementing operations and, in certain embodiments, to passivated cement accelerators and methods of using passivated cement accelerators in subterranean formations. An embodiment may comprise a method of cementing comprising: providing a cement composition comprising cement, water, and a passivated cement accelerator; and allowing the cement composition to set.