Abstract:
Systems and methods for providing flexible robotic actuators are disclosed. Thanks to the concentrical positioning of a plurality of inflatable channels, the claimed soft robot is capable of providing a radial deflection motion. A method for operating the disclosed robotic systems is also disclosed.
Abstract:
A soft robotic device includes a flexible body having a width, a length and a thickness, wherein the thickness is at least 1 mm, the flexible body having at least one channel disposed within the flexible body, the channel defined by upper, lower and side walls, wherein at least one wall is strain limiting; and a pressurizing inlet in fluid communication with the at least one channel, the at least one channel positioned and arranged such that the wall opposite the strain limiting wall preferentially expands when the soft robotic device is pressurized through the inlet.
Abstract:
The ability to assemble three-dimensional structures using diamagnetic particles suspended in solutions containing paramagnetic cations is described. The major advantages of this separation device are that: (i) it is a simple apparatus that does not require electric power (aset of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) the assembled structures can be removed from the paramagnetic solution for further processing after fixing the structure; iii) the assembly is fast; and iv) it is small, portable.