Abstract:
A stack of MTJ layers is provided on a substrate comprising a bottom electrode, a pinned layer, a tunnel barrier layer, a free layer, and a top electrode. The MTJ stack is patterned to form a MTJ device wherein sidewall damage is formed on its sidewalls. A dielectric spacer is formed on the MTJ device. The dielectric spacer is etched away on horizontal surfaces wherein the dielectric spacer on the sidewalls is partially etched away. The remaining dielectric spacer covers the pinned layer and bottom electrode. The dielectric spacer is removed from the free layer or is thinner on the free layer than on the pinned layer and bottom electrode. Sidewall damage is thereafter removed from the free layer by applying a horizontal etching to the MTJ device wherein the pinned layer and bottom electrode are protected from etching by the dielectric spacer layer.
Abstract:
Enhanced He and Hk in addition to higher thermal stability up to at least 400°C are achieved in magnetic devices by adding dusting layers on top and bottom surfaces of a spacer in a synthetic antiferromagnetic (SAF) structure to give a RL1/DL1/spacer/DL2/RL2 reference layer configuration where RL1 and RL2 layers exhibit perpendicular magnetic anisotropy (PMA), the spacer induces antiferromagnetic coupling between RL1 and RL2, and DL1 and DL2 are dusting layers that enhance PMA. Dusting layers are deposited at room temperature to 400°C. RL1 and RL2 layers are selected from laminates such as (Ni/Co)n, L1o alloys, or rare earth-transition metal alloys. The reference layer may be incorporated in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Dusting layers and a similar SAF design may be employed in a free layer for Ku enhancement and to increase the retention time of a memory cell for STT-MRAM designs.
Abstract:
Synthetic antiferromagnetic (SAF) and synthetic ferrimagnetic (SyF) free layer structures are disclosed that reduce Ho (for a SAF free layer), increase perpendicular magnetic anisotropy (PMA), and provide higher thermal stability up to at least 400°C. The SAF and SyF structures have a FL1/DL1/spacer/DL2/FL2 configuration wherein FL1 and FL2 are free layers with PMA, the coupling layer induces antiferromagnetic or ferrimagnetic coupling between FL1 and FL2 depending on thickness, and DL1 and DL2 are dusting layers that enhance the coupling between FL1 and FL2. The SAF free layer may be used with a SAF reference layer in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Furthermore, a dual SAF structure is described that may provide further advantages in terms of Ho, PMA, and thermal stability.
Abstract:
An improved PMA STT MTJ storage element, and a method for forming it, are described. By inserting a suitable oxide layer (21) between the storage (20) and cap (41) layers, improved PMA properties are obtained, increasing the potential for a larger Eb/kT thermal factor as well as a larger MR. Another important advantage is better compatibility with high processing temperatures, potentially facilitating integration with CMOS.
Abstract:
A plasma enhanced chemical vapor deposition (PECVD) method is disclosed for forming a SiON encapsulation layer on a magnetic tunnel junction (MTJ) sidewall that minimizes attack on the MTJ sidewall during the PECVD or subsequent processes. The PECVD method provides a higher magnetoresistive ratio for the MTJ than conventional methods after a 400°C anneal. In one embodiment, the SiON encapsulation layer is deposited using a N 2 O:silane flow rate ratio of at least 1 :1 but less than 15:1. A N 2 O plasma treatment may be performed immediately following the PECVD to ensure there is no residual silane in the SiON encapsulation layer. In another embodiment, a first (lower) SiON sub-layer has a greater Si content than a second (upper) SiON sub-layer. A second encapsulation layer is formed on the SiON encapsulation layer so that the encapsulation layers completely fill the gaps between adjacent MTJs.
Abstract:
A magnetic element in a spintronic device or serving as a propagation medium in a domain wall motion device is disclosed wherein first and second interfaces of a free layer with a perpendicular Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to increase thermal stability in a magnetic tunnel junction. The free layer may be a single layer or a composite and is comprised of a glassing agent that has a first concentration in a middle portion thereof and a second concentration less than the first concentration in regions near first and second interfaces. A CoFeB free layer selectively crystallizes along first and second interfaces but maintains an amorphous character in a middle region containing a glass agent providing the annealing temperature is less than the crystallization temperature of the middle region.
Abstract:
A boron or boron containing dusting layer such as CoB or FeB is formed along one or both of top and bottom surfaces of a free layer at interfaces with a tunnel barrier layer and capping layer to improve thermal stability while maintaining other magnetic properties of a MTJ stack. Each dusting layer has a thickness from 0.2 to 20 Angstroms and may be used as deposited, or at temperatures up to 400°C or higher, or following a subsequent anneal at 400°C or higher. The free layer may be a single layer of CoFe, Co, CoFeB or CoFeNiB, or may include a non-magnetic insertion layer. The resulting MTJ is suitable for STT-MRAM memory elements or spintronic devices. Perpendicular magnetic anisotropy is maintained in the free layer at temperatures up to 400°C or higher. Ku enhancement is achieved and the retention time of a memory cell for STT-MRAM designs is increased.
Abstract:
A magnetic element is disclosed wherein first and second interfaces of a free layer with a perpendicular Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to increase thermal stability in a magnetic tunnel junction (MTJ). The free layer may be a single layer or a composite and is comprised of one or more glassing agents that have a first concentration in a middle portion thereof and a second concentration less than the first concentration in regions near first and second interfaces. As a result, a CoFeB free layer, for example, selectively crystallizes along first and second interfaces but maintains an amorphous character in a middle region containing a glass agent providing the annealing temperature is less than the crystallization temperature of the middle region. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.