Abstract:
A method for video coding comprising signaling a prediction mode and a partition mode for a coding unit via a string of bits, wherein one of the bits in the string indicates whether or not the partition size for the coding unit is equivalent to the entire coding unit and another of the bits in the string indicates whether the coding unit partitions are horizontal strips or vertical strips, and wherein, when a slice type of the coding unit is either predictive or bi-predictive, one of the bits in the string indicates whether the prediction type is intra or inter.
Abstract:
Novel systems of an evanescent microwave probe (EWP) are disclosed, which enable measurements of physical properties of a sample with enhanced sensitivity and resolution, simultaneously. In one embodiment, new shielding features are added to the probe (which may be of either a sharpened tip or loop configuration) to reduce the effects of residual far field radiation, while maintaining the probe section that extends beyond the shielding aperture of the resonator. To further increase the sensitivity of the instrument, an automatic gain-controlled active feedback loop system may be added to the probe resonator to form a self-oscillator. This new active circuit feature significantly increases the effective Q of the resonator probe, enhancing the sensitivity of both the frequency and Q measurement.
Abstract:
The present embodiments are directed to cancer therapy; specifically a technique called "nanoparticle ferromagnetic resonance heating," where ferromagnetic resonance heating in addition to an RF hyperthermia treatment is used to cause cancer cell apoptosis and necrosis. An apparatus for carrying out a ferromagnetic resonance heating treatment of a tumor, comprises a volume concentration of super paramagnetic particles contained within the interior of the tumor, the concentration ranging from about 0.1 to about 1 percent; a magnetic field source configured to deliver a gradient DC magnetic field to the region of the tumor; and an energy source configured to deliver to the tumor an RF field at a frequency ranging from about 100 to 200 MHz. The apparatus of claim 1, wherein the super paramagnetic particles are selected from the group consisting of maghemite (?-Fe 2 O 3 ) based compounds, and yttrium iron garnet (Y 3 Fe 5 O 12 ) based compounds.
Abstract translation:本实施例涉及癌症治疗; 具体地,称为“纳米颗粒铁磁共振加热”的技术,其中除了RF热疗处理之外的铁磁共振加热被用于引起癌细胞凋亡和坏死。 用于进行肿瘤的铁磁共振加热处理的装置包括肿瘤内部所含的超顺磁性颗粒的体积浓度,其浓度范围为约0.1%至约1%; 磁场源,被配置为向所述肿瘤的区域递送梯度DC磁场; 以及能量源,其被配置为以大约100至200MHz的频率向所述肿瘤输送RF场。 2.根据权利要求1所述的装置,其中所述超顺磁性粒子选自由以下物质组成的组:由磁赤铁矿(α-Fe 2 O 3 O 3)基化合物和钇铁石榴石(Y 3 sub> 5 sub> 12 sub> 12)基的化合物。
Abstract:
A solid-state lamp comprises a body having a first chamber with inlet apertures and a second chamber with outlet apertures. The chambers are interconnected in fluid communication by one or more passages. The lamp further comprises a thermally conductive substrate having a heat radiating surface located within at least one chamber and one or more solid-state light emitters, typically LEDs, mounted in thermal communication with the thermally conductive substrate. The lamp is configured such that in operation heat generated by the LEDs is radiated by the substrate into one or both chambers causing a difference in air pressure between the chambers that results in surrounding air being drawn into the inlet apertures, flowing through the chambers via the interconnecting passages in the substrate and exiting through the outlet apertures thereby cooling the substrate and LEDs.
Abstract:
This invention pertains to the use of spin resonance absorption heating as a therapeutic treatment method wherein electron spin resonance absorption of superparamagnetic (SPM) nanoparticles can be used as an intracellular heating method, more preferably as an in vivo heating method that can be utilized in a variety of therapeutic contexts and can further allow for resonance imaging and internal thermometry.
Abstract:
Methods and systems for electron spin MRI (eMRI) and novel methods for fabricating N@C 60 fullerenes using the discovery that certain endohedral fullerenes can be used as functional paramagnetic materials exhibiting increased relaxation times. These endohedral fullerenes provide improved labels for use in electron spin resonance (ESR) detection systems.
Abstract translation:使用电子自旋MRI(eMRI)的方法和系统以及用于制造N C 60 F富勒烯的新方法,其发现某些内含面富勒烯可用作表现出增加的弛豫时间的功能顺磁材料。 这些内嵌的富勒烯提供了用于电子自旋共振(ESR)检测系统的改进的标记。
Abstract:
This invention pertains to the discovery that certain endohedral fullerenes are functional paramagnetic materials exhibiting increased relaxation times. These endohedral fullerenes provide improved labels for use in electron spin resonance (ESR) detection systems.
Abstract:
The present embodiments are directed to cancer therapy; specifically a technique called "nanoparticle ferromagnetic resonance heating," where ferromagnetic resonance heating in addition to an RF hyperthermia treatment is used to cause cancer cell apoptosis and necrosis. An apparatus for carrying out a ferromagnetic resonance heating treatment of a tumor, comprises a volume concentration of super paramagnetic particles contained within the interior of the tumor, the concentration ranging from about 0.1 to about 1 percent; a magnetic field source configured to deliver a gradient DC magnetic field to the region of the tumor; and an energy source configured to deliver to the tumor an RF field at a frequency ranging from about 100 to 200 MHz. The apparatus of claim 1, wherein the super paramagnetic particles are selected from the group consisting of maghemite (?-Fe 2 O 3 ) based compounds, and yttrium iron garnet (Y 3 Fe 5 O 12 ) based compounds.
Abstract:
A spin resonance microscope is disclosed, the microscope design comprising an integrated evanescent wave probe (11) and scanning tunneling microscope tip (17). The probe and tip may be either the same structure, or they may be separate structures. The integrated design allows for coherent excitation of precessing electron spin states in the sample (18) such that spin resonance may be detected because the tunneling current is modulated by the spin resonance. Spin resonance may be affected by either adjacent nuclei, or by adjacent electrons. The present apparatus (10) requires significantly reduced power inputs, such that the dead time of the system is short, and relaxation phenomena may be evaluated without swamping the instrument's electronics.
Abstract:
High throughput screening of catalyst libraries may be performed using spin resonance techniques, and an evanescent wave probe developed by the present inventors. The probe may operate using either nuclear magnetic resonance or electron spin resonance techniques. In one configuration, a scanning evanescent wave spin resonance probe is used in conjunction with a library of catalysts or other materials, and localized detection of spin resonance is carried out at each library address. In another configuration, the evanescent wave probe is used in a micro-reactor array assay.