Abstract:
A system may include sensor equipment, task performance equipment, and a yard maintenance manager. The sensor equipment may include one or more sensors disposed on a parcel of land. The task performance equipment may be configured to perform a task on the parcel. The task may be associated with generating a result that is enabled to be monitored via the sensor equipment. The yard maintenance manager may be configured to interface with the sensor equipment and the task performance equipment to compare measured conditions with desirable conditions to direct operation of the task performance equipment.
Abstract:
An outdoor power tool may include an engine, a working assembly that performs a cutting operation powered by the engine, movement sensor circuitry configured to at least determine movement information of the outdoor power tool using inertia based measurements locally determined at the outdoor power tool, and a position monitoring module including processing circuitry configured to receive the movement information and receive an input defining a reference point. The position monitoring module may be further configured to provide feedback to an operator of the outdoor power tool to direct operation of the outdoor power tool based on the movement information.
Abstract:
A robotic work tool comprising a work tool (160), a tool damage detector (162) and a controller (110) for controlling the operation of the robotic work tool (100), the robotic work tool (100) being configured to detect that the work tool (100) is damaged or lost by detecting an irregularity utilizing the tool damage detector (162) and thereby determining that the work tool (160) is damaged or lost.
Abstract:
A system may include sensor equipment, a local yard maintenance manager and a remote yard maintenance manager. The sensor equipment includes one or more sensors disposed on a parcel of land. The local yard maintenance manager may be disposed proximate to the parcel and configured to interface with the sensor equipment to monitor growing conditions on the parcel. The remote yard maintenance manager may be disposed remotely with respect to the parcel and configured to interface with the sensor equipment.
Abstract:
A robotic work tool system (200) comprising a robotic work tool (100) comprising a collision detection sensor (190), said collision detection sensor (190) comprising a first sensor element (191) and a plurality of second sensor elements (192), wherein said first sensor element (191) is movably arranged with respect to said plurality of second sensor elements (192), wherein said robotic work tool (100) is configured to detect that said first sensor element (191) is proximate a peripheral second sensor element (192) and in response thereto determine that a collision has been detected, and detect that said first sensor element (191) is not proximate any peripheral second sensor element (192) and in response thereto determine that a lift has been detected.
Abstract:
A method for creating a visualization of a parcel or garden may include receiving information indicative of position data of a robotic vehicle transiting a parcel and corresponding image data captured by the robotic vehicle at one or more locations on the parcel. The method may further include generating a model of the parcel based on the information received, providing a graphical representation of the parcel based on the model, and enabling an operator to interact with the graphical representation to view one or more content items associated with respective ones of the one or more locations.
Abstract:
A system may include sensor equipment, task performance equipment, a yard maintenance manager and a robot. The sensor equipment may include one or more sensors disposed on a parcel of land. The task performance equipment may be configured to perform a task on the parcel. The task may be associated with generating a result that is enabled to be monitored via the sensor equipment. The yard maintenance manager may be configured to interface with the sensor equipment and the task performance equipment to compare measured conditions with desirable conditions to direct operation of the task performance equipment. The robot may be configured to work the parcel and perform at least one of acting as one of the one or more sensors, acting as a device of the task performance equipment, or interacting with the sensor equipment or the task performance equipment.
Abstract translation:系统可以包括传感器设备,任务执行设备,庭院维护管理器和机器人。 传感器设备可以包括设置在一块土地上的一个或多个传感器。 任务执行设备可以被配置为在包裹上执行任务。 该任务可以与生成能够通过传感器设备进行监视的结果相关联。 庭院维护管理器可以被配置为与传感器设备和任务执行设备交互以将测量的条件与期望的条件进行比较以指导任务执行设备的操作。 机器人可以被配置为对包裹进行加工并执行充当一个或多个传感器之一,充当任务执行设备的设备,或者与传感器设备或任务执行设备进行交互的至少一个。 p >
Abstract:
A battery charging system may include one or more battery packs each of which includes control circuitry and a switching assembly, and a charger including a power section and a charge controller. The charge controller and/or the control circuitry may be configured to direct operation of the switching assembly to control charging of the one or more battery packs.
Abstract:
An outdoor power tool activity monitoring device is provided. The device may include processing circuitry configured for receiving indications of device activity of the outdoor power tool, determining whether the device activity correlates to a predefined work pattern, determining a set of instructions associated with the predefined work pattern in response to the device activity correlating to the predefined work pattern, and initiating provision of the set of instructions to define a programmed response to the predefined work pattern.
Abstract:
A battery pack may include a plurality of battery cells, a cell retainer and a heat exchanger assembly. The cell retainer may define a plurality of cell reception slots configured to retain respective ones of the battery cells. The cell retainer may define an enclosure that fixes the battery cells and is not penetrated by any cooling apparatus. The cell retainer may be in thermal communication with the battery cells to transfer heat away from the battery cells. The heat exchanger assembly may be in thermal communication with the cell retainer and external to the cell retainer to at least passively transfer heat away from the cell retainer while the battery pack is operated in a discharge mode. The cell retainer may include a thermally conductive material capable of transferring heat to the heat exchanger assembly and also storing at least some of the heat.