Abstract:
A method for making a dielectric film includes a substrate on which is deposited a siloxane starting material and particles,wherein the siloxane starting material has a siloxane polymer, a siloxane oligomer and/or silane monomers, and wherein the particles have an average particle size of less than 400nm. After deposition, heat and/or electromagnetic energy is applied to the siloxane particle layer so as to cure the layer and form a dielectric film on the substrate. The formed film is is optically transmissive to visible light and transmits at least 80% of the visible light incident thereon, and is electrically insulating and has a sheet resistance of 1000 Ω/sq or more.
Abstract:
Methods and materials are dislosed for making three dimensional articles via 3d printing. The methods can include printing both electrically insulating and electrically conducting portions, transparent, reflective or opaque portions, transparent portions having different refractive indices, portions of different colors, and where the various deposited portions are UV or heat curable, and optionally comprise particles, such as metallic particles in electrically conductive portions and ceramic particles in electrically insulating portions. A variety of 3D articles can be made, such as transparent articles such as eyeglasses, or electronics articles such as portions of smartphones, tablets or the like.
Abstract:
A display has a plurality of pixels in a matrix, the pixels each comprising a liquid crystal layer and/or light emitting diode layer, a plurality of substrates, at least a first substrate being optically transmissive to visible light, an electrode formed on one of the subtrates and having electrically conductive material that has an electrical resistivity of less than 200 Ω/sq and that comprises a siloxane material and particles having an average particle size of less than 10 microns.
Abstract:
An adhesive or encapsulant composition, having a siloxane polymer having a molecular weight of from 300 to 150,000 g/mol and having a viscosity of from1000 to 100,000 mPa-sec at 5 rpm viscometer and at 25º C, and a curing agent that aids in curing the siloxane polymer upon the application of ultraviolet light. The composition is transmissive to visible light with an optical transmissivity of 95% or more in the visible spectrum at a thickness of 1 mm or less, and wherein the siloxane polymer is a material formed without hydrosilylation and has less than 5 mol% of Si-OH groups compared to all groups bound to Si therein, and substantially no Si-H bonds.
Abstract:
An LED lamp is formed from a die substrate wherein the substrate has formed thereon a semiconductor material, an electrode for the application of a bias across the semiconductor material for causing light to be emitted therefrom, and an adhesive that bonds the die substrate to a support substrate, wherein the adhesive is a polymerized siloxane polymer having a thermal conductivity of greater than 0.1watts per meter kelvin(W/(m·K)) wherein the adhesive is not light absorbing, wherein the siloxane polymer has silicon and oxygen in the polymer backbone, as well as aryl or alky groups bound thereto, and wherein the adhesive further comprises particles having an average particle size of less than 100 microns.