Abstract:
Compute-in memory circuits and techniques are described. In one example, a memory device includes an array of memory cells, the array including multiple sub-arrays. Each of the sub-arrays receives a different voltage. The memory device also includes capacitors coupled with conductive access lines of each of the multiple sub-arrays and circuitry coupled with the capacitors, to share charge between the capacitors in response to a signal. In one example, computing device, such as a machine learning accelerator, includes a first memory array and a second memory array. The computing device also includes an analog processor circuit coupled with the first and second memory arrays to receive first analog input voltages from the first memory array and second analog input voltages from the second memory array and perform one or more operations on the first and second analog input voltages, and output an analog output voltage.
Abstract:
An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit. The CIM circuit includes a mathematical computation circuit having a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit. The CIM circuit includes a mathematical computation circuit having an accumulation circuit. The accumulation circuit includes a ferroelectric BEOL capacitor to store a value to be accumulated with other values stored by other ferroelectric BEOL capacitors.
Abstract:
An integrated circuit (IC), as a computation block of a neuromorphic system, includes a time step controller to activate a time step update signal for performing a time-multiplexed selection of a group of neuromorphic states to update. The IC includes a first circuitry to, responsive to detecting the time step update signal for a selected group of neuromorphic states: generate an outgoing data signal in response to determining that a first membrane potential of the selected group of neuromorphic states exceeds a threshold value, wherein the outgoing data signal includes an identifier that identifies the selected group of neuromorphic states and a memory address (wherein the memory address corresponds to a location in a memory block associated with the integrated circuit), and update a state of the selected group of neuromorphic states in response to generation of the outgoing data signal.
Abstract:
Examples herein relate to a memory device comprising an eDRAM memory cell, the eDRAM memory cell can include a write circuit formed at least partially over a storage cell and a read circuit formed at least partially under the storage cell; a compute near memory device bonded to the memory device; a processor; and an interface from the memory device to the processor. In some examples, circuitry is included to provide an output of the memory device to emulate output read rate of an SRAM memory device comprises one or more of: a controller, a multiplexer, or a register. Bonding of a surface of the memory device can be made to a compute near memory device or other circuitry. In some examples, a layer with read circuitry can be bonded to a layer with storage cells. Any layers can be bonded together using techniques described herein.
Abstract:
Techniques and mechanisms for a memory device to perform in-memory computing based on a logic state which is detected with a voltage-controlled oscillator (VCO). In an embodiment, a VCO circuit of the memory device receives from a memory array a first signal indicating a logic state that is based on one or more currently stored data bits. The VCO provides a conversion from the logic state being indicated by a voltage characteristic of the first signal to the logic state being indicated by a corresponding frequency characteristic of a cyclical signal. Based on the frequency characteristic, the logic state is identified and communicated for use in an in-memory computation at the memory device. In another embodiment, a result of the in-memory computation is written back to the memory array.