Abstract:
An inductor and multiple inductors embedded in a substrate (e.g., IC package substrate, board substrate, and/or other substrate) is provided herein.
Abstract:
A ceramic package substrate has a recess. This allows a device in that recess to be close to a die attached to the substrate's top side, for better performance. The device may be an array capacitor, an in-silicon voltage regulator, or another device or devices.
Abstract:
Semiconductor packages and a method of forming a semiconductor package are described. The semiconductor package has a foundation layer, a conductive layer formed in the foundation layer, and a magnetic layer formed between the conductive and the foundation layer. The conductive layer and the magnetic layer are coupled to form a low-profile inductor shield. The semiconductor package also has a dielectric layer formed between the magnetic and foundation layer. The foundation layer is mounted between a motherboard and a semiconductor die, where the foundation layer is attached to the motherboard with solder balls. Accordingly, the low-profile inductor shield may include a z-height that is less than a z-height of the solder balls. The low-profile inductor shield may have solder pads that are coupled to the conductive layer. The foundation layer may include at least one of voltage regulator and inductor, where the inductor is located above the low-profile inductor shield.
Abstract:
The present description relates to the field of fabricating microelectronic structures. The microelectronic structure may include a microelectronic substrate have an opening, wherein the opening may be formed through the microelectronic substrate or may be a recess formed in the microelectronic substrate. A microelectronic package may be attached to the microelectronic substrate, wherein the microelectronic package may include an interposer having a first surface and an opposing second surface. A microelectronic device may be attached to the interposer first surface and the interposer may be attached to the microelectronic substrate by the interposer first surface such that the microelectronic device extends into the opening. At least one secondary microelectronic device may be attached to the interposer second surface.
Abstract:
An embodiment of the present invention is a technique to fabricate a package substrate. The package substrate includes top substrate layers, an array capacitor, and bottom substrate layers. The top substrate layers embed micro-vias. The micro-vias have a micro- via area and provide electrical connections between the top substrate layers. The array capacitor structure is placed in contact with the micro-via area. The array capacitor structure is electrically connected to the micro- vias. The bottom substrate layers are formed on the array capacitor structure.
Abstract:
An integrated circuit (IC) package includes a substrate and an IC die mounted on a first side of the substrate. The IC package also includes a plurality of capacitors mounted on a second side of the substrate. The second side is opposite to the first side. The IC package further includes a plurality of conductive contact pads formed on the second side of the substrate and interspersed among the capacitors. Other embodiments are described and claimed.
Abstract:
Embodiments disclosed herein include microelectronic boards and electronic systems. In an embodiment, a microelectronic board comprises aboard substrate, where the board substrate has a first thickness between a first surface and a second surface opposite from the first surface. In an embodiment, a recess is formed into the first surface of the board substrate, where the recess comprises a third surface between the first surface and the second surface. In an embodiment, the board substrate has a second thickness between the third surface and the second surface. In an embodiment, the microelectronic board further comprises a voltage regulator (VR) module attached to the third surface.
Abstract:
An array capacitor is described for use with an integrated circuit (IC) mounted on an IC package. The array capacitor includes a number of first conductive layers (201, 203…) interleaved with a number of second conductive layers (202, 204…) and a number of dielectric layers (211-220) separating adjacent conductive layers. The array capacitor further includes a number of first conductive vias (331, 333…) to electrically connect the first conductive layers and a number of second conductive vias (334, 336…) to electrically connect the second conductive layers. The array capacitor is provided with openings (155, 371, 372, 373) which are configured to enable pins (135) from an IC package (120) to pass through.
Abstract:
An embodiment of the present invention is a technique to integrate passive components in a die assembly. A capacitor, inductor, or resistor is integrated on a spacer between upper and lower dies in stacked dies. Conductors are attached to the capacitor, inductor or resistor to connect the capacitor, inductor, or resistor to at least one of the upper and lower dies.
Abstract:
Embodiments disclosed herein include electronic packages with embedded inductors. In an embodiment, an electronic package comprises a package substrate, where the package substrate comprises a plurality of dielectric layers. In an embodiment, the electronic package further comprises an inductor embedded in the package substrate, where the inductor comprises: a trace with a first end and a second end. In an embodiment, a magnetic material surrounds the trace between the first end and the second end. In an embodiment, a first via is connected to the first end, and a second via is connected to the second end.