Abstract:
A wireless multi-cell communication system and a method for configuring a cell for enhanced uplink (EU) services. The wireless communication system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The RNC configures EU services for the WTRU and the Node-B in at least one cell of the system. At least one of the WTRU and the Node-B report EU traffic statistics and EU performance statistics to the RNC. The RNC adjusts the configuration of the EU services for the WTRU and the Node-B in the at least one cell in accordance with the received EU traffic statistics and the EU performance statistics.
Abstract:
In a radio access network (300), novel system and methods reduce processing delay, and inprove integration with IP networks, by separating user data (325) from connection management and control data (329) at a node B (310) or at a base station. The user data are (325) routed to an IP(Internet Protocol) switch (309), whereas the connection management and control data (329) are routed to a centralized radio network controller (RNC) (303). Pursuant to a second embodiment of the invention, a centralized RNC provides improved radio resource management (RRM) functionality by handling all the connection management and control data for a plurality of the nodes B's, thereby simplifying the switching of the user data throughout the radio access network. Pursuant to a third embodiment of the invention, a smart IP swicth is equipped to swicth user data without core network (CN) involvement. Downlink user data are switched independently of uplink user data.
Abstract:
A high speed packet access (HSPA) protocol architecture includes an HSPA Node B, an HSPA radio network controller (RNC), and a core network. The HSPA Node B includes a user plane (UP)/control plane (CP) transmit (Tx) lower radio link controller (RLC) functional layer, a UP/CP receive (Rx) lower RLC functional layer, a medium access control (MAC) functional layer, and a physical layer. The HSPA RNC includes a radio resource controller (RRC) functional layer, a packet data convergence protocol (PDCP) functional layer, a UP/CP Tx upper RLC functional layer, a UP/CP Rx upper RLC functional layer, and a physical layer. The HSPA NodeB is in communication with the HSPA RNC and the HSPA RNC is in communication with the core network.
Abstract:
A wireless communication method and apparatus for coordinating Node-Bs during handover for enhanced uplink (EU) transmission. In one embodiment, a radio network controller (RNC) initiates an inter-Node-B soft handover. A wireless transmit/receive unit (WTRU) establishes communication connections with a plurality of Node-Bs. A particular one of the Node-Bs is designated as being a primary Node-B, and each of other Node-Bs are designated as being a non-primary Node-B. The RNC informs all of the Node-Bs that the particular Node-B is a primary Node-B. The primary Node-B schedules EU transmission and performs ACK/NACK during soft handover. In another embodiment, the RNC initiates a hard handover for a WTRU connected to a source Node-B. The RNC sends an activation timer to the source Node-B to set the time for handover. As many previously negatively acknowledged (NACKed) data packets as possible are prioritized for retransmission in the source Node-B before the activation timer expires.
Abstract:
A wireless communication method and system for controlling an enhanced uplink (EU) radio access bearer (RAB). The wireless communication system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The RNC configures an EU RAB to operate on an enhanced dedicated channel (E-DCH). At least one of the WTRU and the Node-B report EU traffic statistics and EU performance statistics to the RNC. The RNC then adjusts the configuration of the EU RAB in accordance with the received EU traffic statistics, the EU performance statistics, and information collected by the RNC itself.
Abstract:
A wireless communication method and system for controlling the current data bit rate of a radio link (RL) to maintain the quality of the RL. The system includes a core network (CN), a radio network controller (RNC) and at least one wireless transmit/receive unit (WTRU). The RL is established between the RNC and the WTRU. The RNC establishes a guaranteed data bit rate, a maximum data bit rate and a current data bit rate associated with the RL. When the RNC senses an event which indicates that the quality of the RL has substantially deteriorated, the RNC reduces the value of the current data bit rate. Then, in a recovery process, if a similar event does not occur during an established waiting period, the RNC restores the current data bit rate back to the maximum data bit rate.
Abstract:
Enhancements are provided for the radio link control (RLC) protocol in wireless communication systems where variable RLC packet data unit (PDU) size is allowed. When flexible RLC PDU sizes are configured by upper layers, radio network controller (RNC)/Node B flow control, RLC flow control, status reporting and polling mechanisms are configured to use byte count based metrics in order to prevent possible buffer underflows in the Node B and buffer overflows in the RNC. The enhancements proposed herein for the RLC apply to both uplink and downlink communications.
Abstract:
Method and apparatus for arranging wireless transmit/receive unit (WTRU) capability distribution between point to point (PtP) and point to multipoint (PtM) services. The method addresses PtP/PtM specific and common capabilities shared between PtM and PtP. The method utilizes procedures and different scenarios to coordinate establishment/release of PtP and PtM services and distribution of WTRU PtP/PtM capabilities within a universal mobile telecommunication system terrestrial radio access network (UTRAN).
Abstract:
A method and wireless multi-cell communication system for providing high speed downlink packet access (HSDPA) services (FIG. 1). The system includes a radio network controller (RNC) (105) in communication with a plurality of base stations (110, 115 and 120). The RNC sends a control signal (140A, 140B,and 140C) to at least one base station having a plurality of timeslots, e.g., in a time division duplex (TDD) system and/or frames including transmission timing intervals (TTIs), e.g., in a frequency division duplex (FDD) system assigned thereto for the establishment of HSDPA channels. The control signal indicates a maximum allowed HSDPA transmit power for each of the timeslots and/or TTIs. The base station (110, 115 and 120) sends a feedback signal (145A, 145B and 145C) to the RNC indicating the results of measurements of the power of the transmitted HSDPA timeslots and/or TTIs during a predetermined time period.
Abstract:
The invention performs long term evolution (LTE) tracking area updates (TAUs), and tracking area code (TAC) and public land mobile network identification (PLMN-ID) assisted optimized wireless transmit/receive unit (WTRU) cell reselection. An evolved Node-B broadcasts system information including at least one system information block (SIB) based at least in part on an enhanced universal terrestrial radio access network (E-UTRAN) parameter response message sent by an evolved packet core (EPC) network. A WTRU generates a new TAC, which represents a tracking area identification (TA-ID) of a new cell, based on the system information, and compares the new TAC to an existing TAC, which represents a TA-ID of a previous cell. The WTRU transmits to the EPC network a TAU request message including the TA-ID of the new cell. The EPC network sends either a TAU accept message or a TAU reject message to the WTRU.