IMPEDANCE TOMOGRAPHY SYSTEM FOR ALIGNMENT FEEDBACK OF A CHARGING DEVICE FOR AN IMPLANTABLE MEDICAL DEVICE

    公开(公告)号:WO2023285503A2

    公开(公告)日:2023-01-19

    申请号:PCT/EP2022/069540

    申请日:2022-07-13

    Inventor: MCINTOSH, David

    Abstract: The present invention relates to a medical system (1) comprising an implantable medical device (2), comprising an energy storage device for supplying electrical energy to the medical device (2), and a secondary coil (20) for transferring electrical energy to the energy storage device, and a charging device (3) which is designed to charge the energy storage device, the charging device (3) having a primary coil (30) via which electrical energy can be transferred to the energy storage device via the secondary coil of the implantable medical device (2). According to the invention, it is provided that the charging device (3) has a plurality of metal electrodes (31) which are arranged in front of the primary coil (30) and are each assigned to a segment (32) of a housing surface (33) of the charging device (3), the charging device (3) being designed to use the metal electrodes (31) to calculate an impedance for each segment (32) and to use the impedances to check whether the primary coil (30) is aligned with the secondary coil (20) for optimum energy transfer.

    STENT-ELECTRODE INTRAVASCULAR NEUROMODULATOR AND ASSOCIATED METHODS FOR ACTIVATION OF A NERVE

    公开(公告)号:WO2021123757A1

    公开(公告)日:2021-06-24

    申请号:PCT/GB2020/053223

    申请日:2020-12-15

    Abstract: A stent for intravascular stimulation comprises a scaffold comprising first and second scaffold structures, each scaffold structure comprising at least one substantially annular portion. The stent further comprises one or more anodal electrodes formed from or electrically coupled to at least a substantially annular portion of the first scaffold structure and one or more cathodal electrodes electrically formed from or coupled to at least a substantially annular portion of the second scaffold structure. The stent further comprises an anodal lead electrically coupled to the first scaffold structure to form a conductive path from the one or more anodal electrodes to a generator and a cathodal lead electrically coupled to the second scaffold structure to form a conductive path from the one or more cathodal electrodes to the generator. The stent further comprises a sleeve of insulating material, wherein the scaffold structures are attached to or formed on the sleeve of insulating material and are separated from each other by a distance such that the first and second scaffold structures are electrically insulated from each other.

    A STENT-ELECTRODE INTRAVASCULAR NEUROMODULATOR AND ASSOCIATED METHODS FOR ACTIVATION OF A NERVE

    公开(公告)号:WO2022269278A1

    公开(公告)日:2022-12-29

    申请号:PCT/GB2022/051621

    申请日:2022-06-23

    Abstract: Stents for intravascular neural stimulation are disclosed herein that at least partially contact a vessel wall. The stent comprises a scaffold extending in a longitudinal direction and having an outer perimeter that at least partially contacts the wall. A pulse generator can generate electrical signals for delivery to a nerve for intravascular neural stimulation. The scaffold has mounted thereon a first set of one or more electrodes electrically coupled to the pulse generator. The stent further comprises a second set of one or more electrodes electrically coupled to the pulse generator. The second set of electrodes is unconnected to the scaffold, i.e. not directly mounted on the scaffold. Methods of implanting a stent into a vessel using a deployment catheter are disclosed herein. The stent to be implanted comprises a pulse generator, a scaffold, and a distal set of one or more electrodes electrically coupled to the pulse generator. The distal set of electrodes is unconnected to the scaffold, i.e. not directly mounted on the scaffold. The method comprises positioning a distal end of the deployment catheter at the intravascular location, advancing the stent within the deployment catheter, further advancing the stent to expose the one or more electrodes of the distal set of one or more electrodes outside of, preferably beyond the deployment catheter, providing an electrical stimulation via the exposed electrodes, and withdrawing the stent within the deployment catheter.

Patent Agency Ranking