Abstract:
A testing machine (8) for testing a test specimen (18) includes controllable movable element (15) configured to be coupled to the test specimen(18) and a computing device (9; 23)configured to control controllable movable element (15). Generally,, the computing device (9; 23) including a graphical user interface (47) that has one or more features that provides situational awareness to the user and/or aids in configuring the test machine (8).
Abstract:
An orthopedic simulator is provided with a mechanism with a plurality of sub-mechanisms that generate relative motions between the portions of orthopedic devices, such as spinal disc implants. The sub-mechanisms are configured to be nested so as to place the sub-mechanism with the highest required performance closest to the specimen.
Abstract:
An orthopedic simulator is provided with a mechanism configured to apply motions and forces to a test specimen, such as a spinal implant, and a controller configured to control the mechanism to selectively apply the motions and forces in accordance with sinusoidal and non-sinusoidal curves.
Abstract:
An orthopedic simulator is provided with a slide table assembly that is configurable to be selectively operable in a plurality of operational modes. The modes may include a free-floating mode, a positive axis lock mode, and a shear plane loading mode.
Abstract:
A method of constructing an electric linear displacement motor (20) for use in a testing device (12) includes providing a stator (22) having as stator housing (28) with internal coils (23) and a through bore extending from a first end (34) of the stator housing (28) to the second end (36) of the housing (28). First and second end supports (54 and 56) are connected to the first and second ends (34 and 36) of the stator housing (28). An armature (24) having magnets retained therein is inserted into the stator housing (28) such of the armature (24) is supported by the first end support (54) and the second end support (56). A plurality of set screws (60) are inserted into threaded openings (32) proximate both the first end and the second end (34 and 36) of the housing(28). The set screws (60) then support and retain the armature (24) such that there is an annular gap between the armature (24) and the coils (23).
Abstract:
A testing machine includes a base (127), a support member (112), a controllable movable element (22) and a head assembly (114) adjustably coupled to the support member to obtain different positions relative to the base (127). The head assembly (114) can be positioned in a service position whereat service is in a convenient position using limited controls and/or includes features to enhance service of components in the head assembly (114). A method of positioning the head assembly (114) is also provided.
Abstract:
An orthopedic simulator is provided with an integral central manifold that provides internal routing of pressurized hydraulic fluid, compressed air, or electrical power to the actuators of the orthopedic simulator. The integral manifold is structurally coupled to support elements and resist and transfer bending and shear forces to the support elements.
Abstract:
A force applicator assembly (10; 10') is disclosed to calibrate an in-situ force transducer (or load cell) (104) in a force (load) applying test machine (125). The force applicator (10) includes stationary member (22; 22') configured to be secured to fixed structure, a moving member (20; 20'), a load cell (12) operably coupled to an end of the moving member (20; 20'); and a differential screw assembly (24; 24") connecting the moving member (20; 20') to the stationary member (22; 22'). A coupling assembly (14) can be used to assure that only tension or compression loads are applied. The coupling assembly (14) can be configured if desired such that no tension or compression loads can be applied. A method to calibrate an in-situ force transducer (104) in a force applying test machine (205) is also provided and uses a force generator (16; 16'; 125) and the coupling assembly (14).
Abstract:
A testing apparatus (12) includes a crosshead (151) and a head assembly (150). The head assembly (150) includes a head cover (156) having an interior volume (182). An electric actuator (152), controls and other electric components (158) are located within the interior volume (182, 184), wherein the motor (152), controls and other electric components (158) generate heat when energized. A divider (170) within the interior volume (182, 184) separates a first volume (182) from a second volume (184). The first volume (182) includes the heat generating electric motor (152), controls and electric components (158) and the second volume (184) contains substantially no heat generating components. The head assembly (150) includes at least one fan (202) within the second volume that draws cool air from outside the head cover (156) and forces the cool air through the second volume (184) and into the first volume (182) to remove heat.
Abstract:
An orthopedic simulator, such as a spinal implant wear test machine, is provided with a specimen containment module that may be removed from the machine as a unit. The releasable attachability of the specimen containment module permits remote specimen installation and reduces environmental contamination.