摘要:
The invention is related to azetidinium-containing copolymers and vinylic monomers and their uses in formation of non-silicone hydrogel coatings on silicone hydrogel contact lenses.
摘要:
The invention is related to a class of hydrophilic poly(meth)acrylamide-based copolymers each comprising dangling (i.e., pendant) reactive chains each terminated with a carboxyl group groups and at least 50% by mole of (meth)acrylamide repeating units relative to all repeating units of the hydrophilic poly(meth)acrylamide-based copolymer. The hydrophilic copolymers have a relatively high affinity to a base coating of a polyanionic polymer on a medical device or contact lens and are highly reactive towards azetidinium groups of an azetidinium-containing polymer upon heating. They can find particular use in producing water-soluble highly-branched hydrophilic polymeric material and in producing water gradient contact lenses.
摘要:
A process for producing water gradient contact lenses comprises a step of heating a contact lens precursor with an anchor layer of a polyanionic polymer in an aqueous solution comprising at least one low molecular weight polyaziridine and at least one thermally- crosslinkable hydrophilic polymeric material to form an outer surface hydrogel layer which is covalently attached to the anchor layer, to convert a majority or most negatively-charged groups in the water gradient contact lens into non-charged ester groups through aziridine groups to minimize or eliminate uptake of a polycationic antimicrobial, and to crosslinked the anchor layer through a polyaziridine as a flexible crosslinker so as to enforce the durability of the outer surface hydrogel layer while having no or minimal adverse impacts on the wettability, hydrophilicity, and lubricity of the outer surface hydrogel layer on the contact lens.
摘要:
Described herein are water-soluble UV-absorbing vinylic monomers and their uses in preparing UV-absorbing contact lenses capable of blocking ultra-violet ("UV") radiation and optionally (but preferably) violet radiation with wavelengths from 380 nm to 440 nm, thereby protecting eyes to some extent from damages caused by UV radiation and potentially from violet radiation. This invention also provides a UV-absorbing contact lens.
摘要:
The present invention generally relates to a method for applying a coating of hydrophilic polymers onto silicone hydrogel contact lenses to improve hydrophilicity and lubricity. In particular, the present invention is directed to a method for forming a coating on a contact lens, preferably a silicone hydrogel contact lens, directly in the primary package and maintaining the coated contact lens within said primary package until insertion of the coated contact lens in the eye of the contact lens user. The resultant silicone hydrogel contact lens has a coating with good hydrophilicity, improved lubricity and good durability and also can be used directly from the lens package by a patient without washing and/or rising.
摘要:
The invention is related to a method for producing soft contact lenses comprises a silicone hydrogel lens body and a composite coating thereon. The composite coating comprises: a plasma base coating which is chemically-attached directly onto the surface of the silicone hydrogel contact lens and functions as a fail-proof measure for ensuring the hydrophobic silicone hydrogel lens material to be shielded from any exposure to ocular environments even after at least 30 days of daily uses including daily waring and daily cleaning/disinfecting; and a relatively-durable lubricious hydrogel top coating for ensuring wearing comfort. A method of the invention comprises forming a plasma-reactive hydrophilic polymer hybrid base coating having reactive functional groups on a silicone hydrogel contact lens and heating the silicone hydrogel contact lens with the hybrid base coating in an aqueous solution of a water-soluble and thermally crosslinkable hydrophilic polymeric material to form a stable lubricious hydrogel coating thereon. This method has a minimized adverse impact on the mechanical properties of silicone hydrogel lens body.
摘要:
The invention is generally related to soft contact lenses which comprise a non-silicone hydrogel lens body and a hydrogel coating thereon. The non-silicone hydrogel lens body is composed of a hydrogel material which is free of silicone and comprises at least 50% by mole of repeating units of at least one hydroxyl-containing vinylic monomer. The hydrogel coating comprises a first polymeric material having first reactive functional groups and a hydrogel layer derived from a second polymeric material having second reactive functional groups, and the hydrogel layer is covalently attached onto the anchor layer through linkages each formed between one first reactive functional group and one second reactive functional group. The soft contact lens has a surface lubricity better than the lubricity of the non-silicone hydrogel lens body and has a friction rating of about 2 or lower after 7 cycles of manual rubbing, a water content of from about 10% to about 85% by weight and an elastic modulus of from about 0.2 MPa to about 1.5 MPa when being fully hydrated at room temperature.
摘要:
The present invention provides an aqueous lens care solution for disinfecting and/or cleaning contact lenses in an ozone-based lens care system. The lens care solution of the invention is a hypotonic solution, has an osmolality at about 25C of from about 200 mOsm/kg to about 260mOsm/kg, and comprises at least one relatively-ozone-inert buffering agent selected from the group consisting of boric acid, sodium tetraborate, potassium tetraborate, acetic acid, sodium acetate, potassium acetate, and a mixture thereof. The aqueous lens care solution is compatible with ozone electrolytically generated in an ozone-based lens care system as characterized by comprising about 30 mM or less of chloride ion and less than about 10 mM of one or more ozone-interfering buffering agents.
摘要:
A process for producing watr gradient contact lenses comprises a step of staging and heating a contact lens precursor having an anchor layer of a polyanionic polymer in an aqueous solution comprising at least one low molecular weight polyaziridine compound and at least one thermally-crosslinkable hydrophilic polymeric material to form an outer surface hydrogel layer which is covalently attached to the anchor layer, to convert a majority or most negatively-charged groups in the water gradient contact lens into non-charged ester groups through aziridine groups to minimize or eliminate uptake of a polycationic antimicrobial, and to crosslinked the anchor layer through a polyaziridine compound as a flexible crosslinker so as to enforce the durability of the outer surface hydrogel layer while having no or minimal adverse impacts on the wettability, hydrophilicity, and lubricity of the outer surface hydrogel layer on the contact lens.
摘要:
The invention is related to a process for producing contact lenses that not only comprise a water gradient structural configurations, but also have a minimized uptakes of polyquaternium-1 and a long-lasting surface hydrophilicity and wettability even after being undergone a 30-days lens care regime. This process comprises a step of treating a preformed water gradient contact lens with a thick outer surface hydrogel layer thereon with a small, flexible, hydrophilic charge neutralizer, so as to convert a majority or most negatively-charged groups in the water gradient contact lens into non-charged ester groups while enforcing the durability of the outer surface hydrogel layer on the contact lens by crosslinking the anchor layer with a flexible crosslinker and having no or minimal adverse impacts on the wettability, hydrophilicity, and lubricity of the outer surface hydrogel layer on the contact lens.