Abstract:
Disclosed herein are recombinant meganucleases engineered to recognize and cleave a recognition sequence present in the human mitochondrial DNA (mtDNA). The disclosure further relates to the use of such recombinant meganucleases in combination with mitochondrial transit peptides in methods for producing genetically-modified eukaryotic cells, and to a population of genetically-modified eukaryotic cells wherein the mtDNA has been modified or edited.
Abstract:
The present invention encompasses engineered nucleases which recognize and cleave a recognition sequence within the int22h-1 sequence of a Factor VIII gene. The present invention also encompasses methods of using such engineered nucleases to make genetically- modified cells, and the use of such cells in a pharmaceutical composition and in methods for treating hemophilia A. Further, the invention encompasses pharmaceutical compositions comprising engineered nuclease proteins, nucleic acids encoding engineered nucleases, or genetically-modified cells of the invention, and the use of such compositions for treating of hemophilia A.
Abstract:
The present invention encompasses engineered meganucleases which recognize and cleave a recognition sequence within an open reading frame (ORF) of the genome of at least two genotypes of the Hepatitis B virus (HBV). The present invention also encompasses methods of using such engineered meganucleases in a pharmaceutical composition and in methods for treating or reducing the symptoms of a HBV infection, or treating hepatocellular carcinoma (HCC). Further, the invention encompasses pharmaceutical compositions comprising engineered meganuclease proteins, nucleic acids encoding engineered meganucleases, and the use of such compositions for treating HBV infections or HCC.
Abstract:
Targeted transcriptional effectors (transcription activators and transcription repressors) derived from meganucleases are described. Also described are nucleic acids encoding same, and methods of using same to regulate gene expression. The targeted transcriptional effectors can comprise (i) a meganuclease DNA-binding domain lacking endonuclease cleavage activity that binds to a target recognition site; and (ii) a transcription effector domain.
Abstract:
The present disclosure encompasses engineered meganucleases that bind and cleave recognition sequences within a dystrophin gene. The present disclosure also encompasses methods of using such engineered meganucleases to make genetically modified cells. Further, the disclosure encompasses pharmaceutical compositions comprising engineered meganuclease proteins, or polynucleotides encoding engineered meganucleases of the disclosure, and the use of such compositions for the modification of a dystrophin gene in a subject, or for treatment of Duchenne Muscular Dystrophy.
Abstract:
Disclosed are engineered nucleases that bind and cleave a recognition sequence within a hydroxyacid oxidase 1 (HAO1 ) gene. The present invention also encompasses methods of using such engineered nucleases to make genetically-modified cells. Further, the invention encompasses pharmaceutical compositions comprising engineered nuclease proteins or nucleic acids encoding engineered nucleases of the invention, and the use of such compositions for treatment of primary hyperoxaluria type I.
Abstract:
The present disclosure provides modified EGFR peptides useful in genetically-modified cells to allow for selection and enrichment of those cells expressing the modified EGFR peptide. For example, isolation of genetically-modified cells expressing a modified EGFR peptide can allow for selection of cells that co-express a chimeric antigen receptor or exogenous T cell receptor. In those instances wherein the genetically-modified cells present adverse effects when administered to a subject, the modified EGFR finds further use as a suicide gene upon administration of an anti-EGFR antibody, leading to depletion of the genetically-modified cells. Also disclosed herein are plasmids and viral vectors comprising a nucleic acid sequence encoding the modified EGFR peptides, and methods of administering compositions comprising the modified EGFR peptides to subjects in order to reduce the symptoms, progression, or occurrence of disease, such as cancer.
Abstract:
The present invention provides a genetically-modified T cell comprising in its genome a modified human T cell receptor alpha gene. The modified T cell receptor alpha gene comprises an exogenous sequence of interest inserted into an intron within the T cell receptor alpha gene that is positioned 5' upstream of TRAC exon 1. The exogenous sequence of interest can comprise an exogenous splice acceptor site and/or a poly A signal, which disrupts expression of the T cell receptor alpha subunit. The sequence of interest can also include a coding sequence for a polypeptide, such as a chimeric antigen receptor. Additionally, the endogenous splice donor site and the endogenous splice acceptor site flanking the intron are unmodified and/or remain functional. The invention further provides compositions and methods for producing the genetically-modified cell, and populations of the cell, and methods for the treatment of a disease, such as cancer, using such cells.
Abstract:
Methods of cleaving double-stranded DNA that can be recognized and cleaved by a rationally-designed, I-Crel-derived meganuclease are provided. Also provided are recombinant nucleic acids, cells, and organisms containing such recombinant nucleic acids, as well as cells and organisms produced using such meganucleases. Also provided are methods of conducting a custom-designed, I-Crel-derived meganuclease business.
Abstract:
Disclosed herein are recombinant meganucleases engineered to bind and cleave a recognition sequence in the mitochondrial DNA (mtDNA) of a eukaryotic cell, such as a plant cell. The disclosure further relates to the use of such recombinant meganucleases in methods for producing genetically-modified eukaryotic cells, and to a population of genetically-modified eukaryotic cells wherein the mtDNA has been having modified or edited.