Abstract:
A method of measuring a clock signal includes launching an edge of a timing signal on a first edge of the clock signal, outputting an edge of a capture signal on a second edge of the clock signal, receiving the edge of the timing signal and the edge of the capture signal at a time-to-digital converter (TDC), and measuring a time delay using the TDC, wherein the time delay is between a time the edge of the timing signal is received at the TDC and a time the edge of the capture signal is received at the TDC.
Abstract:
In certain aspects, a system comprises a voltage-droop mitigation circuit configured to monitor voltage droop in a supply voltage supplied to a circuit, and to perform voltage-droop mitigation for the circuit if the monitored voltage droop is equal to or greater than a droop threshold. In one aspect, the system also includes a performance monitor configured to track a number of clock cycles over which the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of clock cycles. In another aspect, the system also includes a performance monitor configured to track a number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within a time duration, and to adjust the droop threshold based on the number of times that the voltage-droop mitigation circuit performs the voltage-droop mitigation within the time duration.
Abstract:
Aspects of the present disclosure related to a method of duty-cycle distortion compensation in a system including a clock generator configured to generate a clock signal. The method includes measuring one or more parameters of the clock signal, determining a duty-cycle adjustment based on the measured one or more parameters, and adjusting a duty cycle of the clock signal based on the determined duty-cycle adjustment.
Abstract:
In controlling power in a portable computing device ("PCD"), a power supply input to a PCD subsystem may be modulated with a modulation signal when an over-current condition is detected. Detection of the modulation signal may indicate to a processing core of the subsystem to reduce its processing load. Compensation for the modulation signal in the power supply input may be applied so that the processing core is essentially unaffected by the modulation signal.
Abstract:
An adaptive clock distribution (ACD) system (100) with a voltage tracking clock generator (VTCG) (108) is disclosed. The ACD system includes a tunable-length delay (TLD) circuit (104), to generate a TLD clock by adding a preselected delay to a root clock (102), and a voltage droop detector (106) for detecting a voltage droop in a supply voltage. The VTCG is configured to generate a VTCG clock (109), wherein a frequency of the VTCG clock is finely tuned to one of two or more values to correspond to a magnitude of the supply voltage during the voltage droop. A clock selector (110) selects the VTCG clock (109) as an ACD clock (111) to be provided to an electronic circuit (120) during the voltage droop and the TLD clock (105) as the ACD clock (111) when there is no voltage droop detected.
Abstract:
In certain aspects, a system includes a voltage controller, wherein the voltage controller includes switches coupled between a voltage supply rail and an output of the voltage controller, each of the switches having a control input, and a control circuit coupled to the control inputs of the switches. The system also includes a timing circuit coupled to the control circuit, wherein the timing circuit includes a delay line, and flops, each of the flops having an input and an output, wherein the input of each of the flops is coupled to a respective node on the delay line, and the outputs of the flops are coupled to the control circuit.
Abstract:
The present disclosure is directed to mitigating voltage droops. An aspect includes outputting, by a clock module coupled to a multiplexor, a first clock signal to the multiplexor, the first clock signal generated by a clock delay component of the clock module, receiving, by the clock module, a second clock signal from a phase-locked loop (PLL), wherein the PLL outputs a third clock signal to a processor coupled to the PLL and the multiplexor, selecting, by the multiplexor, the first clock signal to output to the processor based on detecting a droop in voltage on a power supply, and selecting, by the multiplexor, the third clock signal to output to the processor based on detecting that the droop in the voltage on the power supply has passed, wherein the clock module and the processor are coupled to the power supply.
Abstract:
The clock frequency of a processor is reduced in response to a dispatch stall due to a cache miss. In an embodiment, the processor clock frequency is reduced for a load instruction that causes a last level cache miss, provided that the load instruction is the oldest load instruction and the number of consecutive processor cycles in which there is a dispatch stall exceeds a threshold, and provided that the total number of processor cycles since the last level cache miss does not exceed some specified number.
Abstract:
A register file circuit according to some examples of the disclosure may include a memory cell, a header transistor circuit, and a driver circuit. The header transistor circuit may include one or more PFET headers in series with the PFETs of the memory cell with the gate of the PFET header for the row being written being controlled with a pulse write signal from the driver circuit. In some examples of the disclosure, the header transistor circuit may include an NFET pull-down inserted between a virtual-vdd and ground to discharge the virtual-vdd node reducing the contention during a write operation and a clamping NFET in parallel with the PFET header to clamp the virtual-vdd node to slightly below the threshold voltage of the pull-up PFET in the memory cell to ensure the pull-up PFET is barely off and prevent the virtual-vdd node from discharging all the way to ground.
Abstract:
Aspects of the present disclosure relate to a duty-cycle adjuster (1220) including a first inverter (1235), a first multiplexer (1240), a high-phase extender (1250), a second inverter (1265), and a second multiplexer (1270). The first multiplexer (1240) has a first input (1242), a second input (1244), a select input (1246), and an output (1248). The first input (1242) of the first multiplexer (1240) is coupled to the signal input (1222) of the duty-cycle adjuster (1220), and the select input (1246) of the first multiplexer (1240) is coupled to the first control input (1226). The first inverter (1235) is coupled between the signal input (1222) of the duty-cycle adjuster (1220) and the second input (1244) of the first multiplexer (1240).