Abstract:
A gear-shifting serializer-deserializer (SerDes) is provided that uses a first divisor value to form a divided clock while de-serializing a serial data stream prior to a lock detection and that uses a second divisor value to form the divided clock value after the lock detection, wherein the second divisor value is greater than the first divisor value.
Abstract:
A quarter-rate clock signal (205 out) is doubled in a frequency doubler (210, 220, 235) to produce a half-rate clock signal used by a serializer/deserializer (SerDes) interface (215, 240) to serialize (215) and deserialize (240) data (250, 255).
Abstract:
An integrated circuit (IC) chip includes an on-chip analog signal monitoring circuit for monitoring a set of analog signals generated by one or more mixed signal cores within the IC chip, converting the analog signals into digital signals, storing the digital signals in an on-chip memory, and providing the digital signals to a test equipment upon request. The analog signal monitoring signal includes an on-chip reference generator for generating precise voltages and/or currents, a switching network for routing a selected reference signal to an analog-to-digital converter (ADC) for calibration purpose and for routing a selected analog signal from one of the mixed signal cores to the ADC for digitizing purposes. The IC chip further includes an on-chip memory for storing the digitized analog signals for subsequent accessing by a test equipment for analysis. The IC chip includes a digital analog test point (ATP) for outputting the digitized analog signals.
Abstract:
An apparatus configured to apply equalization to an input data signal and detect data based on the equalized data signal. The apparatus includes a passive equalizer comprising a first signal path configured to generate a first signal based on an input signal, and a second signal path configured to generate a second signal by filtering the input signal. The apparatus further includes a sense amplifier having an input circuit configured to generate a third signal related to a combination of the first and second signals, and a data detection circuit configured to generate data based on the third signal. The data detection circuit may be configured as a strong-arm latch. The third signal may be a differential current signal including positive and negative current components. The strong-arm latch generating data based on whether the positive current component is greater than the negative current component.
Abstract:
In one embodiment, a phase locked loop (PLL) comprises a voltage-controlled oscillator (VCO), a frequency divider configured to frequency divide an output signal of the VCO to produce a feedback signal, and a phase detection circuit configured to detect a phase difference between a reference signal and the feedback signal, and to generate an output signal based on the detected phase difference. The PLL also comprises a proportional circuit configured to generate a control voltage based on the output signal of the phase detection circuit, wherein the control voltage tunes a first capacitance of the VCO to provide phase correction. The PLL further comprises an integration circuit configured to convert the control voltage into a digital signal, to integrate the digital signal, and to tune a second capacitance of the VCO based on the integrated digital signal to provide frequency tracking.
Abstract:
Aspects of the disclosure are directed to generating a quadrature clock signal from an in-phase clock signal. In accordance with one aspect, a delay locked loop (DLL), including a first pulse to digital converter (PDC) to generate a first pulse width measurement, wherein the first pulse width measurement includes a first sign and a first magnitude; a second pulse to digital converter (PDC) to generate a second pulse width measurement, wherein the second pulse width measurement includes a second sign and a second magnitude; a digital loop filter coupled to the first PDC and the second PDC, the digital loop filter to generate a filtered comparison output based on the first pulse width measurement and the second pulse width measurement; and a first delay generation block to generate a quadrature clock signal based on the filtered comparison output and an in-phase clock signal.
Abstract:
Aspects of the disclosure are directed to a pulse to digital converter. In accordance with one aspect, the pulse to digital converter includes an input to receive an input pulse signal; a fractional element, coupled to the input, wherein the fractional element generates a fractional pulse width measurement of the input pulse signal; and an integral element, coupled to the input, wherein the integral element generates an integral pulse width measurement of the input pulse signal, and wherein the fractional pulse width measurement and the integral pulse width measurement are concatenated as an output signal.
Abstract:
In certain aspects, a voltage regulator includes a pass transistor having a drain coupled to an input of the voltage regulator, a source coupled to an output of the voltage regulator, and a gate. The voltage regulator also includes an amplifier having a first input coupled to a reference voltage, a second input coupled to a feedback voltage, and an output, wherein the feedback voltage is approximately equal to or proportional to a voltage at the output of the voltage regulator. The voltage regulator further includes a voltage booster having an input coupled to the output of the amplifier and an output coupled to the gate of the pass transistor, wherein the voltage booster is configured to boost a voltage at the input of the voltage booster to generate a boosted voltage, and to output the boosted voltage at the output of the voltage booster.
Abstract:
In one embodiment, method for frequency division comprises propagating a modulus signal up a chain of cascaded divider stages from a last one of the divider stages to a first one of the divider stages, and, for each of the divider stages, generating a respective local load signal when the modulus signal propagates out of the divider stage. The method also comprises, for each of the divider stages, inputting one or more respective control bits to the divider stage based on the respective local load signal, the one or more respective control bits setting a divider value of the divider stage.